"""Unit tests of posydon/grids/downsampling.py
"""
__authors__ = [
"Matthias Kruckow <Matthias.Kruckow@unige.ch>"
]
# import the module which will be tested
import posydon.grids.downsampling as totest
# aliases
np = totest.np
# import other needed code for the tests, which is not already imported in the
# module you like to test
from pytest import fixture, raises, warns
from inspect import isclass, isroutine
from posydon.utils.posydonwarning import InappropriateValueWarning
# define test classes collecting several test functions
[docs]
class TestElements:
# check for objects, which should be an element of the tested module
[docs]
def test_dir(self):
elements = {'Pwarn', 'TrackDownsampler', '__authors__',\
'__builtins__', '__cached__', '__doc__', '__file__',\
'__loader__', '__name__', '__package__', '__spec__', 'np',\
'rescale_from_0_to_1', 'sys'}
totest_elements = set(dir(totest))
missing_in_test = elements - totest_elements
assert len(missing_in_test) == 0, "There are missing objects in "\
+f"{totest.__name__}: "\
+f"{missing_in_test}. Please "\
+"check, whether they have been "\
+"removed on purpose and update "\
+"this unit test."
new_in_test = totest_elements - elements
assert len(new_in_test) == 0, "There are new objects in "\
+f"{totest.__name__}: {new_in_test}. "\
+"Please check, whether they have been "\
+"added on purpose and update this "\
+"unit test."
[docs]
def test_instance_rescale_from_0_to_1(self):
assert isroutine(totest.rescale_from_0_to_1)
[docs]
def test_instance_TrackDownsampler(self):
assert isclass(totest.TrackDownsampler)
[docs]
class TestFunctions:
# test functions
[docs]
def test_rescale_from_0_to_1(self):
# missing argument
with raises(TypeError, match="missing 1 required positional "\
+"argument: 'array'"):
totest.rescale_from_0_to_1()
# bad input
with raises(ValueError, match="Scaler works for matrices only."):
totest.rescale_from_0_to_1(None)
# examples
test_values = [[0, 1, 3, -1], [0.5, 2, 3, -2], [0.4, 1.5, 3, -1]]
norm_values = [[0.0, 0.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0],\
[0.8, 0.5, 0.0, 1.0]]
min_values = [0.0, 1.0, 3.0, -2.0]
max_values = [0.5, 2.0, 3.0, -1.0]
assert np.array_equal(totest.rescale_from_0_to_1(test_values),\
np.array(norm_values))
arr, minima, maxima = totest.rescale_from_0_to_1(test_values,\
return_minmax=True)
assert np.array_equal(arr, np.array(norm_values))
assert np.array_equal(minima, np.array(min_values))
assert np.array_equal(maxima, np.array(max_values))
[docs]
class TestTrackDownsampler:
[docs]
@fixture
def independent_sample(self):
return np.array([0.0, 0.1, 1.0, 1.2])
[docs]
@fixture
def dependent_sample(self):
return np.array([[1.1, 0.0], [1.0, 0.1], [0.7, 0.5], [0.1, 0.1]])
[docs]
@fixture
def norm_dependent_sample(self, dependent_sample):
return totest.rescale_from_0_to_1(dependent_sample)
[docs]
@fixture
def TrackDownsampler(self, independent_sample, dependent_sample):
# initialize an instance of the class with defaults
return totest.TrackDownsampler(independent_sample, dependent_sample)
# test the TrackDownsampler class
[docs]
def test_init(self, independent_sample, dependent_sample,\
norm_dependent_sample, TrackDownsampler):
assert isroutine(TrackDownsampler.__init__)
# check that the instance is of correct type and all code in the
# __init__ got executed: the elements are created and initialized
assert TrackDownsampler.verbose == False
assert TrackDownsampler.keep == None
assert np.array_equal(TrackDownsampler.t, independent_sample)
assert np.array_equal(TrackDownsampler.X, norm_dependent_sample)
# examples: dependend is 1D
test_TrackDownsampler = totest.TrackDownsampler([0.0, 0.1], [1.0, 2.0])
assert np.array_equal(test_TrackDownsampler.t, np.array([0.0, 0.1]))
assert np.array_equal(test_TrackDownsampler.X, np.array([[0.0],\
[1.0]]))
# bad input
with raises(ValueError, match="`independent` is not iterable."):
test_TrackDownsampler = totest.TrackDownsampler(None, None)
with raises(ValueError, match="`independent` should be "\
+"one-dimensional."):
test_TrackDownsampler = totest.TrackDownsampler([[], []], None)
with raises(IndexError, match="list index out of range"):
test_TrackDownsampler = totest.TrackDownsampler([], None)
with raises(ValueError, match="`dependent` is not iterable."):
test_TrackDownsampler = totest.TrackDownsampler([0.0], None)
with raises(ValueError, match="Number of dimensions in `dependent` "\
+"> 2."):
test_TrackDownsampler = totest.TrackDownsampler([0.0], [[[], []],\
[[], []]])
with raises(ValueError, match="`independent` should be strictly "\
+"increasing."):
test_TrackDownsampler = totest.TrackDownsampler([0.0, 0.0],\
[1.0, 2.0])
[docs]
def test_say(self, TrackDownsampler, capsys):
assert isroutine(TrackDownsampler.say)
# missing argument
with raises(TypeError, match="missing 1 required positional "\
+"argument: 'message'"):
TrackDownsampler.say()
# examples
TrackDownsampler.say("Test")
assert capsys.readouterr().out == ""
TrackDownsampler.verbose = True
TrackDownsampler.say("Test")
assert capsys.readouterr().out == "Test\n"
[docs]
def test_rescale(self, dependent_sample, TrackDownsampler):
assert isroutine(TrackDownsampler.rescale)
# examples
TrackDownsampler.X = dependent_sample
TrackDownsampler.minima = None
TrackDownsampler.maxima = None
arr, minima, maxima = totest.rescale_from_0_to_1(dependent_sample,\
return_minmax=True)
TrackDownsampler.rescale()
assert np.array_equal(arr, TrackDownsampler.X)
assert np.array_equal(minima, TrackDownsampler.minima)
assert np.array_equal(maxima, TrackDownsampler.maxima)
[docs]
def test_find_downsample(self, TrackDownsampler, capsys):
assert isroutine(TrackDownsampler.find_downsample)
# examples: keep all
TrackDownsampler.find_downsample()
for k in TrackDownsampler.keep:
assert k
# examples: keep only edges
with warns(InappropriateValueWarning, match="`max_err` >= 1.0 is "\
+"like disabling "\
+"downsampling."):
TrackDownsampler.find_downsample(max_err=1.0)
for (i, k) in enumerate(TrackDownsampler.keep):
if ((i==0) or (i+1==len(TrackDownsampler.keep))):
assert k == True
else:
assert k == False
# examples: max_err can skip element 1; max_interval may keeps it
for mi in [None, 1.0, 0.99, -0.85, -0.8]:
TrackDownsampler.find_downsample(max_err=0.12, max_interval=mi)
for (i, k) in enumerate(TrackDownsampler.keep):
if ((i==1) and ((mi is None) or (mi>=1.0) or (mi<=-1.0/1.2))):
assert k == False
else:
assert k == True
# bad input
with raises(ValueError, match="`max_err` must be a non-negative "\
+"finite number."):
TrackDownsampler.find_downsample(max_err=-1.0)
with raises(ValueError, match="`max_err` must be a non-negative "\
+"finite number."):
TrackDownsampler.find_downsample(max_err=np.inf)
[docs]
def test_downsample(self, independent_sample, dependent_sample, TrackDownsampler):
assert isroutine(TrackDownsampler.downsample)
# examples
t, X = TrackDownsampler.downsample()
assert np.array_equal(t, independent_sample)
assert np.array_equal(X, dependent_sample)