posydon_run_pipeline

MESA low_res_grids were run. This includes random grids and reruns.

This is an EXAMPLE of the pipeline for a grid_type=HMS-HMS, metallicity=1e-01_Zsun, compression=LITE/ORIGINAL

STEP 1: grid slices creation [‘grid_low_res_0’,’grid_low_res_1’,’grid_low_res_2’,’grid_low_res_3’, ‘grid_low_res_4’,’grid_low_res_5’,’grid_random_1’, ‘grid_low_res_rerun_opacity_max’] –> output *.h5

STEP 2: grid slices concatenation [[‘grid_low_res_0’,’grid_low_res_1’,’grid_low_res_2’,’grid_low_res_3’, ‘grid_low_res_4’,’grid_low_res_5’],[‘grid_low_res_0’,’grid_low_res_1’, ‘grid_low_res_2’,’grid_low_res_3’,’grid_low_res_4’,’grid_low_res_5’, ‘grid_low_res_rerun_opacity_max’]] –> grid_low_res_combined.h5, grid_low_res_combined_rerun1.h5

STEP 2.1: plot grid slices [‘grid_low_res_combined’,’grid_random_1’,’grid_low_res_combined_rerun1’] –> loop over all plot types

STEP 2.2: check failure rate [‘grid_low_res_combined’,’grid_random_1’,’grid_low_res_combined_rerun1’] –> check failure rate

STEP 3: calculate extra values [‘grid_low_res_combined’,’grid_random_1’,’grid_low_res_combined_rerun1’] –> do post processing on the ORIGINAL grid and append back on the LITE gird the post processed quantities

STEP 3.1: plot extra values [‘grid_low_res_combined’,’grid_random_1’,’grid_low_res_combined_rerun1’] –> loop over all plot types

STEP 3.2: check rates of compact object types [‘grid_low_res_combined’,’grid_random_1’,’grid_low_res_combined_rerun1’] –> check rates of compact object types

STEP 4: train interpolators [‘grid_low_res_combined_rerun1’] –> train the interpolators

STEP 4.1: plot interpolator accuracy and confusion matricies [‘grid_random_1’] –> loop over all plot types

STEP 5: train profile interpolators uses gird and initial-final interpolators to train the profile interpolators

STEP 9: export dataset

STEP RERUN: rerun grid with a fix grid_low_res_combined.rerun(index=logic) –> grid_low_res_rerun_1/grid.csv

–> grid_random_1_rerun_1/grid.csv

– run gird fix and do next post processing

posydon_run_pipeline.calculate_extra_values(i, path_to_csv_file, verbose=False)[source]

Calculating extra values, e.g. values derived from the final profile.

Parameters:
  • i (int) – Index in csv file.

  • path_to_csv_file (str) – Path to csv file.

  • verbose (bool) – Enable/Disable additional output.

posydon_run_pipeline.combine_grid_slices(i, path_to_csv_file, verbose=False)[source]

Combining grid slices to one grid.

Parameters:
  • i (int) – Index in csv file.

  • path_to_csv_file (str) – Path to csv file.

  • verbose (bool) – Enable/Disable additional output.

posydon_run_pipeline.copy_ini_file(grid_type, rerun_metallicity, rerun_type, destination, cluster)[source]

Copies the ini file and make replacements according to the rerun.

Parameters:
  • grid_type (str) – Type of the grid.

  • rerun_metallicity (str) – String representation of the metallicity (e.g. 1e+00_Zsun).

  • rerun_type (str) – Type of rerun (e.g. PISN).

  • destination (str) – Path to the directory for the new runs.

  • cluster (str) – Cluster name (e.g. yggdrasil or quest).

posydon_run_pipeline.create_grid_slice(i, path_to_csv_file, verbose=False, overwrite_psygrid=True)[source]

Creates a new PSyGrid slice.

Parameters:
  • i (int) – Index in csv file.

  • path_to_csv_file (str) – Path to csv file.

  • verbose (bool) – Enable/Disable additional output.

  • overwrite_psygrid (bool) – Whether existing file(s) should be overwritten.

posydon_run_pipeline.do_check(i, path_to_csv_file, verbose=False)[source]

Perform a check on a grid.

Parameters:
  • i (int) – Index in csv file.

  • path_to_csv_file (str) – Path to csv file.

  • verbose (bool) – Enable/Disable additional output.

posydon_run_pipeline.export_dataset(i, path_to_csv_file, verbose=False)[source]

Moving the data set to a place containing all, what is needed to run a population synthesis with POSYDON.

Parameters:
  • i (int) – Index in csv file.

  • path_to_csv_file (str) – Path to csv file.

  • verbose (bool) – Enable/Disable additional output.

posydon_run_pipeline.logic_rerun(grid, rerun_type)[source]

Get the runs, which need a rerun.

Parameters:
  • grid (PSyGrid) – PSyGrid to select runs from.

  • rerun_type (str) – Type of rerun (e.g. PISN).

Returns:

  • runs_to_rerun (list) – Indecies of runs to be rerun.

  • termination_flags (list) – Termination flags to select reruns by.

  • new_mesa_flag (dict) – Name and value of MESA inlist parameters to change to for this rerun.

posydon_run_pipeline.plot_grid(i, path_to_csv_file, verbose=False)[source]

Creates plots of a grid.

Parameters:
  • i (int) – Index in csv file.

  • path_to_csv_file (str) – Path to csv file.

  • verbose (bool) – Enable/Disable additional output.

posydon_run_pipeline.rerun(i, path_to_csv_file, verbose=False)[source]

Generate files to start a rerun.

Parameters:
  • i (int) – Index in csv file.

  • path_to_csv_file (str) – Path to csv file.

  • verbose (bool) – Enable/Disable additional output.

posydon_run_pipeline.train_interpolators(i, path_to_csv_file, verbose=False)[source]

Train an interpolator on a grid.

Parameters:
  • i (int) – Index in csv file.

  • path_to_csv_file (str) – Path to csv file.

  • verbose (bool) – Enable/Disable additional output.

posydon_run_pipeline.train_profile_interpolators(i, path_to_csv_file, verbose=False)[source]

Train a profile interpolator on a grid.

Parameters:
  • i (int) – Index in csv file.

  • path_to_csv_file (str) – Path to csv file.

  • verbose (bool) – Enable/Disable additional output.

posydon_run_pipeline.zams_file_name(metallicity)[source]

Gives the name of the ZAMS file depending on the metallicity.

Parameters:

metallicity (str) – String representation of the metallicity (e.g. 1e+00_Zsun).

Returns:

Name of ZAMS file.

Return type:

str