Source code for posydon.binary_evol.binarystar

"""The binary object describes current and past state of the binary.

The binary object is composed of two star objects and contains the current and
past states of the binary. Only parameters in the BINARYPROPERTIES list are
stored in the history.

The current parameter value of the star object is accessed as, e.g.
`binary.orbital_period` while its past history with
`binary.orbital_period_history`.

The two stars are accessed as, e.g. `binary.star_1.mass`
while their past history with `binary.star_1.mass_history`.

"""


__authors__ = [
    "Konstantinos Kovlakas <Konstantinos.Kovlakas@unige.ch>",
    "Kyle Akira Rocha <kylerocha2024@u.northwestern.edu>",
    "Simone Bavera <Simone.Bavera@unige.ch>",
    "Jeffrey Andrews <jeffrey.andrews@northwestern.edu>",
    "Nam Tran <tranhn03@gmail.com>",
    "Philipp Moura Srivastava <philipp.msrivastava@gmail.com>",
    "Devina Misra <devina.misra@unige.ch>",
    "Scott Coughlin <scottcoughlin2014@u.northwestern.edu>",
]


import signal
import copy
import numpy as np
import pandas as pd
from posydon.binary_evol.simulationproperties import SimulationProperties
from posydon.binary_evol.singlestar import SingleStar, STARPROPERTIES
from posydon.utils.common_functions import (
    check_state_of_star, orbital_period_from_separation,
    orbital_separation_from_period, get_binary_state_and_event_and_mt_case)
from posydon.popsyn.io import (clean_binary_history_df, clean_binary_oneline_df)


# star property: column names in binary history for star 1 and star 2
STAR_ATTRIBUTES_FROM_BINARY_HISTORY = {
    "mass": ["star_1_mass", "star_2_mass"],
    "lg_mdot": ["lg_mstar_dot_1", "lg_mstar_dot_2"],
    "lg_system_mdot": ["lg_system_mdot_1", "lg_system_mdot_2"],
    "lg_wind_mdot": ["lg_wind_mdot_1", "lg_wind_mdot_2"],
}

# only mention those with names different from the column names in history data
STAR_ATTRIBUTES_FROM_STAR_HISTORY = {
    'state': None,                      # to be computed after loading
    'metallicity': None,                # from initial values
    'mass': None,                       # from binary history
    'lg_mdot': None,                    # from binary history
    'lg_system_mdot': None,             # from binary history
    'lg_wind_mdot': None,               # from binary history
    'spin': 'spin_parameter',
    'profile': None
}


BINARY_ATTRIBUTES_FROM_HISTORY = {
    'state': None,
    'event': None,
    'time': 'age',
    'separation': 'binary_separation',
    'orbital_period': 'period_days',
    'eccentricity': None,
    'V_sys': None,
    'mass_transfer_case': None,
    'nearest_neighbour_distance': None
}


BINARYPROPERTIES = [
    # The state and event of the system. For more information, see
    # `posydon.utils.common_functions.get_binary_state_and_event_and_mt_case()
    'state',                    #
    'event',
    'time',                     # age of the system (yr)
    'separation',               # binary orbital separation (solar radii)
    'orbital_period',           # binary orbital period (days)
    'eccentricity',             # binary eccentricity
    'V_sys',                    # list of the 3 systemic velocity coordinates
    # (R_{star} - R_{Roche_lobe}) / R_{Roche_lobe}...
    'rl_relative_overflow_1',   # ...for star 1
    'rl_relative_overflow_2',   # ...for star 2
    'lg_mtransfer_rate',        # log10 of mass lost from the donor (Msun/yr)
    'mass_transfer_case',       # current mass transfer case of the system.
                                # See `get_binary_state_and_event_and_mt_case`
                                # in `posydon.utils.common_functions`.
    'trap_radius',
    'acc_radius',
    't_sync_rad_1',
    't_sync_conv_1',
    't_sync_rad_2',
    't_sync_conv_2',
    'nearest_neighbour_distance',   # the distance of system from its nearest
                                    # neighbour of MESA binary system  in case
                                    # of interpolation during the the end of
                                    # the previous step including MESA psygrid.
                                    # The distance is normalized in the
                                    # parameter space and limits at which it
                                    # was calculated. See `mesa_step` for more.
]


MAXIMUM_STEP_TIME = 120


[docs] def signal_handler(signum, frame): """React to a maximum time signal.""" raise RuntimeError("Binary Step Exceeded Alloted Time: {}". format(MAXIMUM_STEP_TIME))
signal.signal(signal.SIGALRM, signal_handler)
[docs] class BinaryStar: """A class containing the state and history of a stellar binary.""" def __init__(self, star_1=None, star_2=None, index=None, properties=None, **binary_kwargs): """Initialize a binary star. Arguments --------- properties : SimulationProperties Instance of the SimulationProperties class (default: None) star_1 : SingleStar The first star of the binary. star_2 : Star The second star of the binary. **binary_kwargs : dictionary List of initialization parameters for a binary """ # Binary Index self.index = index # Create the two stars self.star_1 = star_1 if star_1 is not None else SingleStar() self.star_2 = star_2 if star_2 is not None else SingleStar() # Set the initial binary properties for item in BINARYPROPERTIES: if item == 'V_sys': setattr(self, item, binary_kwargs.pop(item, [0,0,0])) elif item == 'mass_transfer_case': setattr(self, item, binary_kwargs.pop(item, 'None')) elif item == 'nearest_neighbour_distance': setattr(self, item, binary_kwargs.pop(item, ['None', 'None', 'None'])) else: setattr(self, item, binary_kwargs.pop(item, None)) setattr(self, item + '_history', [getattr(self, item)]) for key, val in binary_kwargs.items(): setattr(self, key, val) if getattr(self.star_1, "mass") is not None and getattr(self.star_2, "mass") is not None: if getattr(self, "separation") is None and getattr(self, "orbital_period") is not None: setattr(self, "separation", orbital_separation_from_period(self.orbital_period, self.star_1.mass, self.star_2.mass)) elif getattr(self, "orbital_period") is None and getattr(self, "separation") is not None: setattr(self, "orbital_period", orbital_period_from_separation(self.separation, self.star_1.mass, self.star_2.mass)) if not hasattr(self, 'inspiral_time'): self.inspiral_time = None if not hasattr(self, 'mass_transfer_case'): self.mass_transfer_case = 'None' if not hasattr(self, 'true_anomaly_first_SN'): self.true_anomaly_SN1 = None if not hasattr(self, 'true_anomaly_second_SN'): self.true_anomaly_SN2 = None if not hasattr(self, 'first_SN_already_occurred'): self.first_SN_already_occurred = False # if not hasattr(self, 'V_sys'): # self.V_sys = [0, 0, 0] # store interpolation_class and mt_history for each step_MESA for grid_type in ['HMS_HMS','CO_HMS_RLO','CO_HeMS','CO_HeMS_RLO']: if not hasattr(self, f'interp_class_{grid_type}'): setattr(self, f'interp_class_{grid_type}', None) if not hasattr(self, f'mt_history_{grid_type}'): setattr(self, f'mt_history_{grid_type}', None) if not hasattr(self, f'culmulative_mt_case_{grid_type}'): setattr(self, f'culmulative_mt_case_{grid_type}', None) # SimulationProperties object - parameters & parameterizations if isinstance(properties, SimulationProperties): self.properties = properties else: self.properties = SimulationProperties()
[docs] def evolve(self): """Evolve a binary from start to finish.""" self.properties.pre_evolve(self) # Code to make sure start time is less than max_simulation_time if self.time > self.properties.max_simulation_time: raise ValueError( "The binary's birth time ({0}) is greater than " "`max_simulation_time` ({1}).".format( self.time, self.properties.max_simulation_time)) max_n_steps = self.properties.max_n_steps_per_binary n_steps = 0 try: while (self.event != 'END' and self.event != 'FAILED' and self.event not in self.properties.end_events and self.state not in self.properties.end_states): signal.alarm(MAXIMUM_STEP_TIME) self.run_step() n_steps += 1 if max_n_steps is not None: if n_steps > max_n_steps: raise RuntimeError("Exceeded maximum number of steps ({})" .format(max_n_steps)) finally: signal.alarm(0) # turning off alarm self.properties.post_evolve(self)
[docs] def run_step(self): """Evolve the binary through one evolutionary step.""" try: total_state = (self.star_1.state, self.star_2.state, self.state, self.event) next_step_name = self.properties.flow.get(total_state) if next_step_name is None: raise ValueError("Undefined next step given stars/binary states {}.".format(total_state)) self.event = 'END' next_step = getattr(self.properties, next_step_name, None) if next_step is None: raise ValueError( "Next step name '{}' does not correspond to a function in " "SimulationProperties.".format(next_step_name)) self.properties.pre_step(self, next_step_name) next_step(self) finally: self.append_state() self.properties.post_step(self, next_step_name)
[docs] def append_state(self): """Update the history of the binaries' properties.""" # Append to the binary history lists for item in BINARYPROPERTIES: getattr(self, item + '_history').append(getattr(self, item)) # Append to the individual star history lists self.star_1.append_state() self.star_2.append_state()
[docs] def switch_star(self): """Switch stars.""" self.star_1, self.star_2 = self.star_2, self.star_1
[docs] def restore(self, i=0): """Restore the BinaryStar() object to its i-th state, keeping the binary history before the i-th state. Parameters ---------- i : int The index of the binary object history to reset the binary to. By default 0, i.e. the star will be restored to its initial state. """ # Move current binary properties to the ith step, using its history for p in BINARYPROPERTIES: setattr(self, p, getattr(self, '{}_history'.format(p))[i]) ## delete the binary history after the i-th index setattr(self, p + '_history', getattr(self, p + '_history')[0:i+1]) ## if running with extra hooks, restore any extra hook columns for hook in self.properties.all_hooks_classes: if hasattr(hook, 'extra_binary_col_names'): extra_columns = getattr(hook, 'extra_binary_col_names') for col in extra_columns: setattr(self, col, getattr(self, col)[0:i+1]) for star in (self.star_1, self.star_2): star.restore(i, hooks=self.properties.all_hooks_classes)
[docs] def reset(self, properties=None): """Reset the binary to its ZAMS state. Parameters ---------- properties : SimulationProperties Instance of the SimulationProperties class (default: None) """ # If provided, update the simulation properties class if properties is not None: self.properties = SimulationProperties(properties) # Use the restore function to move the binary back to its initial state self.restore(i=0)
[docs] def update_star_states(self): """Update the states of the two stars in the binary.""" if self.star_1.state != 'massless_remnant': self.star_1.state = check_state_of_star( self.star_1, star_CO=self.star_1.state in ["WD", "NS", "BH"]) if self.star_2.state != 'massless_remnant': self.star_2.state = check_state_of_star( self.star_2, star_CO=self.star_2.state in ["WD", "NS", "BH"])
[docs] def to_df(self, **kwargs): """Return history parameters from the binary in a DataFrame. Includes star 1 and 2 (S1, S2) data and an extra column 'binary_index'. Parameters ---------- extra_columns : dict( 'name':dtype, .... ) Extra binary parameters to return in DataFrame that are not included in BINARYPROPERTIES. All columns must have an associated pandas data type. Can be used in combination with `only_select_columns`. Assumes names have no suffix. ignore_columns : list Names of binary parameters to ignore. Assumes names have `_history` suffix. only_select_columns : list Names of the only columns to include. Assumes names have `_history` suffix. Can be used in combination with `extra_columns`. null_value : float Replace all None values with something else (for saving). Default is np.nan. include_S1, include_S2 : bool Choose to include star 1 or 2 data to the DataFrame. The default is to include both. S1_kwargs, S2_kwargs : dict kwargs to pass to each star's 'to_df' method (extra/ignore columns) Returns ------- pandas DataFrame """ extra_binary_cols_dict = kwargs.get('extra_columns', {}) extra_columns = list(extra_binary_cols_dict.keys()) extra_columns_dtypes_user = list(extra_binary_cols_dict.values()) all_keys = (["binary_index"] + [key+'_history' for key in BINARYPROPERTIES] + extra_columns) ignore_cols = list(kwargs.get('ignore_columns', [])) keys_to_save = [i for i in all_keys if not ( (i.split('_history')[0] in ignore_cols) or (i in ignore_cols))] if bool(kwargs.get('only_select_columns')): user_keys_to_save = list(kwargs.get('only_select_columns')) keys_to_save = (["binary_index"] + [key+'_history' for key in user_keys_to_save] + extra_columns) try: data_to_save = [getattr(self, key) for key in keys_to_save[1:]] col_lengths = [len(x) for x in data_to_save] max_col_length = np.max(col_lengths) # binary_index data_to_save.insert(0, [self.index]*max_col_length) # If a binary fails, usually history cols have diff lengths. # This should append NAN to create even columns. all_equal_length_cols = len(set(col_lengths)) == 1 if not all_equal_length_cols: for col in data_to_save: col.extend([np.nan] * abs(max_col_length - len(col))) where_none = np.array([[True if var is None else False for var in column] for column in data_to_save], dtype=bool) except AttributeError as err: raise AttributeError( str(err) + "\n\nAvailable attributes in BinaryStar: \n{}". format(self.__dict__.keys())) # Convert None to np.nan by default bin_data = np.array(data_to_save, dtype=object) bin_data[where_none] = kwargs.get('null_value', np.nan) bin_data = np.transpose(bin_data) # remove the _history at the end of all column names column_names = [name.split('_history')[0] for name in keys_to_save] bin_df = pd.DataFrame(bin_data, columns=column_names) # Add 3 columns for V_sys if 'V_sys' in column_names: V_sys_x = np.zeros(len(bin_df)) V_sys_y = np.zeros(len(bin_df)) V_sys_z = np.zeros(len(bin_df)) for i in range(len(bin_df)): V_sys_x[i] = bin_df.iloc[i]['V_sys'][0] V_sys_y[i] = bin_df.iloc[i]['V_sys'][1] V_sys_z[i] = bin_df.iloc[i]['V_sys'][2] bin_df['V_sys_x'] = copy.deepcopy(V_sys_x) bin_df['V_sys_y'] = copy.deepcopy(V_sys_y) bin_df['V_sys_z'] = copy.deepcopy(V_sys_z) # Lose the V_sys list bin_df = bin_df.drop(['V_sys'], axis=1) frames = [bin_df] if kwargs.get('include_S1', True): # we are hard coding the prefix frames.append(self.star_1.to_df( prefix='S1_', null_value=kwargs.get('null_value', np.nan), **kwargs.get('S1_kwargs', {}))) if kwargs.get('include_S2', True): frames.append(self.star_2.to_df( prefix='S2_', null_value=kwargs.get('null_value', np.nan), **kwargs.get('S2_kwargs', {}))) binary_df = pd.concat(frames, axis=1) binary_df.set_index('binary_index', inplace=True) extra_s1_cols_dict = kwargs.get('S1_kwargs', {}).get('extra_columns', {}) extra_s2_cols_dict = kwargs.get('S2_kwargs', {}).get('extra_columns', {}) binary_df = clean_binary_history_df(binary_df, extra_binary_dtypes_user=extra_binary_cols_dict, extra_S1_dtypes_user=extra_s1_cols_dict, extra_S2_dtypes_user=extra_s2_cols_dict) return binary_df
[docs] @classmethod def from_df(cls, dataframe, **kwargs): """Convert a binary from a pandas DataFrame to BinaryStar instance. Parameters ---------- dataframe : Pandas DataFrame data to turn into a BinaryStar instance. index : int, optional Sets the binary index. extra_columns : dict, optional Column names to be added directly to binary not in BINARYPROPERTIES. Returns ------- New instance of BinaryStar """ if isinstance(dataframe, pd.Series): dataframe = pd.DataFrame(dataframe.to_dict(), index=[0]) # split input dataframe into kwargs dicts binary_params, star1_params, star2_params = dict(), dict(), dict() extra_params = dict() extra_columns = kwargs.get('extra_columns', {}) hist_lengths = [] for name in list(dataframe.columns): if 'S1' in name: corr_name = name.split('S1_')[-1] + '_history' star1_params[corr_name] = list(dataframe[name]) hist_lengths.append(len(star1_params[corr_name])) elif 'S2' in name: corr_name = name.split('S2_')[-1] + '_history' star2_params[corr_name] = list(dataframe[name]) hist_lengths.append(len(star2_params[corr_name])) elif name in extra_columns: # this assumes extra cols in binary, not star 1 or 2 extra_params[name] = list(dataframe[name]) hist_lengths.append(len(extra_params[name])) else: corr_name = name + '_history' binary_params[corr_name] = list(dataframe[name]) hist_lengths.append(len(binary_params[corr_name])) # make sure all history columns have equal length assert len(set(hist_lengths)) == 1 history_length = set(hist_lengths).pop() if ('binary_index' in dataframe.index.name and not kwargs.get('index', False)): binary_index = set(dataframe.index).pop() else: binary_index = kwargs.get('index', None) binary = cls(index=binary_index, star_1=SingleStar(**star1_params), star_2=SingleStar(**star2_params), **binary_params) # set extra history columns directly for key, val in extra_params.items(): setattr(binary, key, val) # set some orbital parameters that should exist by hand bp_keys = binary_params.keys() if 'eccentricity_history' not in bp_keys: setattr(binary, 'eccentricity_history', [0]*history_length) setattr(binary, 'eccentricity', 0) if ('separation_history' not in bp_keys and 'orbital_period_history' in bp_keys): separation = orbital_separation_from_period( np.array(binary.orbital_period_history), np.array(binary.star_1.mass_history), np.array(binary.star_2.mass_history),) setattr(binary, 'separation_history', list(separation)) setattr(binary, 'separation', list(separation)[-1]) if ('orbital_period_history' not in bp_keys and 'seperation_history' in bp_keys): period = orbital_period_from_separation( np.array(binary.seperation_history), np.array(binary.star_1.mass_history), np.array(binary.star_2.mass_history),) setattr(binary, 'orbital_period_history', list(period)) setattr(binary, 'orbital_period', list(period)[-1]) # set the binary, star1, star2 parameters to last history value in df for params, pointer in zip( [star1_params, star2_params, binary_params], [binary.star_1, binary.star_2, binary]): for key, val in params.items(): setattr(pointer, key.split('_history')[0], val[-1]) # make BINARYPROPERTIES, history columns same length if not given already_included_cols = [name.split('_history')[0] for name in binary_params.keys()] valid_binaryprop_keys = [p for p in BINARYPROPERTIES if (p not in already_included_cols)] for prop_key in valid_binaryprop_keys: last_default_value = getattr(binary, prop_key+'_history')[-1] len_default = len(getattr(binary, prop_key+'_history')) diff = history_length - len_default getattr(binary, prop_key+'_history').extend([last_default_value] * diff) # make STARPROPERTIES, history columns same length if not given for params, star in zip( [star1_params, star2_params], [binary.star_1, binary.star_2]): already_included_cols = [name.split('_history')[0] for name in params.keys()] valid_starprop_keys = [p for p in STARPROPERTIES if not(p in already_included_cols)] for prop_key in valid_starprop_keys: last_default_value = getattr(star, prop_key+'_history')[-1] len_default = len(getattr(star, prop_key+'_history')) diff = history_length - len_default getattr(star, prop_key+'_history').extend([last_default_value] * diff) return binary
[docs] def to_oneline_df(self, scalar_names=[], history=True, **kwargs): """Convert binary into a single row DataFrame.""" if history: bin_kwargs = kwargs.copy() bin_kwargs['include_S1'] = False bin_kwargs['include_S2'] = False output_df = self.to_df(**bin_kwargs) initial_final_data = output_df.values[[0, -1], :] # first/last row col_names = list(output_df.columns) oneline_names = (['binary_index'] + [s + '_i' for s in col_names] + [s + '_f' for s in col_names]) oneline_data = [self.index] + [d for d in initial_final_data.flatten()] bin_df = pd.DataFrame(data=[oneline_data], columns=oneline_names) else: bin_df = pd.DataFrame() s1_kwargs = kwargs.get('S1_kwargs', {}) if bool(s1_kwargs): s1_df = self.star_1.to_oneline_df(prefix='S1_', **s1_kwargs) else: s1_df = pd.DataFrame() s2_kwargs = kwargs.get('S2_kwargs', {}) if bool(s2_kwargs): s2_df = self.star_2.to_oneline_df(prefix='S2_', **s2_kwargs) else: s2_df = pd.DataFrame() oneline_df = pd.concat([bin_df, s1_df, s2_df], axis=1) for name in scalar_names: if hasattr(self, name): oneline_df[name] = [getattr(self, name)] # check for variables set in BinaryPopulation handling safe evolution if hasattr(self, 'traceback'): oneline_df['FAILED'] = [1] else: oneline_df['FAILED'] = [0] if hasattr(self, 'warnings'): oneline_df['WARNING'] = [1] else: oneline_df['WARNING'] = [0] oneline_df.set_index('binary_index', inplace=True) # try to coerce data types automatically oneline_df = oneline_df.infer_objects() # Set data types for all columns explicitly # we are assuming you may pass the same kwargs to both to_df and oneline extra_binary_cols_dict = kwargs.get('extra_columns', {}) extra_s1_cols_dict = kwargs.get('S1_kwargs', {}).get('extra_columns', {}) extra_s2_cols_dict = kwargs.get('S2_kwargs', {}).get('extra_columns', {}) oneline_df = clean_binary_oneline_df(oneline_df, extra_binary_dtypes_user=extra_binary_cols_dict, extra_S1_dtypes_user=extra_s1_cols_dict, extra_S2_dtypes_user=extra_s2_cols_dict) return oneline_df
[docs] @classmethod def from_oneline_df(cls, oneline_df, **kwargs): """Convert a oneline DataFrame into a BinaryStar. The oneline DataFrame is expected to have initial-final values from history and any individual values that don't have histories. Parameters ---------- oneline_df : DataFrame A oneline DataFrame describing a binary. index : int, None Binary index extra_columns : dict Names of any extra history columns not inlcuded in BINARYPROPERTIES Returns ------- A new BinaryStar instance. """ if isinstance(oneline_df, pd.Series): oneline_df = pd.DataFrame(oneline_df.to_dict(), index=[0]) binary_params, star1_params, star2_params = dict(), dict(), dict() extra_params = dict() extra_columns = kwargs.get('extra_columns', {}) hist_lengths = [] for name in list(oneline_df.columns): if '_f' in name[-2:]: continue # ignore final values param_name = name.split('_i')[0] special_cases = ['natal_kick_array'] if any([i in param_name for i in special_cases]): continue # deal with special cases later # ignore error and warning if name in ['FAILED', 'WARNING']: continue if 'S1' in name: param_name = param_name.split('S1_')[-1] ending_str = '_history' if param_name in STARPROPERTIES else '' star1_params[param_name + ending_str] = list(oneline_df[name]) hist_lengths.append(len(list(oneline_df[name]))) elif 'S2' in name: param_name = param_name.split('S2_')[-1] ending_str = '_history' if param_name in STARPROPERTIES else '' star2_params[param_name + ending_str] = list(oneline_df[name]) hist_lengths.append(len(list(oneline_df[name]))) elif param_name in extra_columns: # this assumes extra cols in binary, not star 1 or 2 extra_params[param_name] = list(oneline_df[name]) hist_lengths.append(len(list(oneline_df[name]))) else: # binary ending_str = ('_history' if param_name in BINARYPROPERTIES else '') binary_params[param_name + ending_str] = list(oneline_df[name]) hist_lengths.append(len(list(oneline_df[name]))) # make sure all history columns have equal length assert len(set(hist_lengths)) == 1 history_length = set(hist_lengths).pop() if any(['S1_natal_kick_array' in name for name in oneline_df.columns]): natalkick_names = ['S1_natal_kick_array_{}'.format(i) for i in range(4)] star1_params['natal_kick_array'] = \ oneline_df[natalkick_names].values if any(['S2_natal_kick_array' in name for name in oneline_df.columns]): natalkick_names = ['S2_natal_kick_array_{}'.format(i) for i in range(4)] star2_params['natal_kick_array'] = \ oneline_df[natalkick_names].values if ('binary_index' in oneline_df.index.name and not kwargs.get('index', None)): binary_index = set(oneline_df.index).pop() else: binary_index = kwargs.get('index', None) binary = cls(index=binary_index, star_1=SingleStar(**star1_params), star_2=SingleStar(**star2_params), **binary_params) # set extra history columns directly for key, val in extra_params.items(): setattr(binary, key, val) # set some orbital parameters that should exist by hand bp_keys = binary_params.keys() if 'eccentricity_history' not in bp_keys: setattr(binary, 'eccentricity_history', [0]) setattr(binary, 'eccentricity', 0) if ('separation_history' not in bp_keys and 'orbital_period_history' in bp_keys): separation = orbital_separation_from_period( np.array(binary.orbital_period_history), np.array(binary.star_1.mass_history), np.array(binary.star_2.mass_history),) setattr(binary, 'separation_history', list(separation)) setattr(binary, 'separation', list(separation)[-1]) if ('orbital_period_history' not in bp_keys and 'seperation_history' in bp_keys): period = orbital_period_from_separation( np.array(binary.seperation_history), np.array(binary.star_1.mass_history), np.array(binary.star_2.mass_history),) setattr(binary, 'orbital_period_history', list(period)) setattr(binary, 'orbital_period', list(period)[-1]) # set the binary, star1, star2 parameters to last history value in df for params, pointer in zip( [star1_params, star2_params, binary_params], [binary.star_1, binary.star_2, binary]): for key, val in params.items(): setattr(pointer, key.split('_history')[0], val[-1]) # make BINARYPROPERTIES, history columns same length if not given already_included_cols = [name.split('_history')[0] for name in binary_params.keys()] valid_binaryprop_keys = [p for p in BINARYPROPERTIES if not(p in already_included_cols)] for prop_key in valid_binaryprop_keys: last_default_value = getattr(binary, prop_key+'_history')[-1] len_default = len(getattr(binary, prop_key+'_history')) diff = history_length - len_default getattr(binary, prop_key+'_history').extend([last_default_value] * diff) # if the binary errored, then set the final event if bool(oneline_df['FAILED'].values[-1]): setattr(binary, 'event', 'FAILED') return binary
def __repr__(self): """Return the object representation when print is called.""" s = '<{}.{} at {}>\n'.format(self.__class__.__module__, self.__class__.__name__, hex(id(self))) if hasattr(self, "error_message"): s += "BINARY FAILED: {}\n".format(self.error_message) if hasattr(self, "warning_message"): s += "WARNING FOUND: {}\n".format(self.warning_message) for p in BINARYPROPERTIES: s += '{}: {}\n'.format(p, getattr(self, p)) for star in (self.star_1, self.star_2): s += '\n{}\n'.format(star) return s[:-1] def __str__(self): """Get a printable description of the binary star.""" s = '' gap = ', ' for name in ['state', 'event']: s += str(getattr(self, name)) + gap def nan_if_not_int_or_float(value): """Return nan if `value` is neither int nor float.""" if isinstance(value, (float, int)): return value return np.nan orb_p = nan_if_not_int_or_float(self.orbital_period) m1 = nan_if_not_int_or_float(self.star_1.mass) m2 = nan_if_not_int_or_float(self.star_2.mass) s += 'p={0:.2f}'.format(orb_p) + gap s += 'S1=({0},M={1:.2f})'.format(self.star_1.state, m1) + gap s += 'S2=({0},M={1:.2f})'.format(self.star_2.state, m2) return 'BinaryStar(' + s + ')'
[docs] @staticmethod def from_run(run, history=False, profiles=False): """Create a BinaryStar object from a PSyGrid run.""" binary = BinaryStar() # get the data for the binary if run.binary_history is not None: n_steps = len(run.binary_history["age"]) if history else 1 bh_colnames = run.binary_history.dtype.names for attr in BINARYPROPERTIES: colname = BINARY_ATTRIBUTES_FROM_HISTORY.get(attr, attr) if colname is not None and colname in bh_colnames: final_value = run.final_values[colname] if history: col_history = list(run.binary_history[colname]) else: col_history = [final_value] else: final_value = None col_history = [None] * n_steps assert n_steps == len(col_history) setattr(binary, attr + "_history", col_history) setattr(binary, attr, final_value) else: return binary # if no binary history, return defaults # get the data for each companion star for star_history, star, prefix in zip([run.history1, run.history2], [binary.star_1, binary.star_2], ["S1", "S2"]): if star_history is not None: h_colnames = star_history.dtype.names for attr in STARPROPERTIES: # get the corresponding column name (default=same name) colname = STAR_ATTRIBUTES_FROM_STAR_HISTORY.get(attr, attr) if colname is not None and colname in h_colnames: final_value = run.final_values[prefix + "_" + colname] if history: col_history = list(star_history[colname]) else: col_history = [final_value] else: final_value = None col_history = [None] * n_steps assert n_steps == len(col_history) setattr(star, attr + "_history", col_history) setattr(star, attr, final_value) # set metallicities (if defined in the track)... try: metallicity = run.initial_values["Z"] except AttributeError: metallicity = None # ...and other star parameters taken from the binary history for star_index, star in enumerate([binary.star_1, binary.star_2]): star.metallicity = metallicity star.metallicity_history = [metallicity] * n_steps for attr, colnames in STAR_ATTRIBUTES_FROM_BINARY_HISTORY.items(): colname = colnames[star_index] final_value = run.final_values[colname] if history: col_history = list(run.binary_history[colname]) else: col_history = [final_value] assert n_steps == len(col_history) setattr(star, attr, final_value) setattr(star, attr + "_history", col_history) # add values at He depletion for colname in run.final_values.dtype.names: if "at_He_depletion" in colname: if colname[0:3]=="S1_": attr = colname[3:] final_value = run.final_values[colname] setattr(binary.star_1, attr, final_value) elif colname[0:3]=="S2_": attr = colname[3:] final_value = run.final_values[colname] setattr(binary.star_2, attr, final_value) else: attr = colname final_value = run.final_values[colname] setattr(binary, attr, final_value) # update eccentricity binary.eccentricity = 0.0 binary.eccentricity_history = [0.0] * n_steps # update star states n_history = len(binary.time_history) for star, track in zip([binary.star_1, binary.star_2], [run.history1, run.history2]): is_CO = track is None state_history = [check_state_of_star(star, i=i, star_CO=is_CO) for i in range(n_history)] star.state_history = state_history star.state = state_history[-1] # update binary state, event and MT case binary.state_history = [] binary.event_history = [] binary.mass_transfer_case_history = [] for i in range(n_history): # step-by-step: previous states matter! result = get_binary_state_and_event_and_mt_case(binary, i=i) binary.state, binary.event, binary.mass_transfer_case = result binary.state_history.append(binary.state) binary.event_history.append(binary.event) binary.mass_transfer_case_history.append(binary.mass_transfer_case) if profiles: binary.star_1.profile = run.final_profile1 binary.star_2.profile = run.final_profile2 return binary