Source code for posydon.binary_evol.SN.step_SN

"""Supernova step.

This step models the end of life of stars by being applied to a binary
object and verifying its state. It performs the collapse prescription
used to initialize the step in the respective star. Depending on the
C and He cores the final state of the star is determined, from the
formation of white dwarfs to electron-capture supernova, Fe core-collapse
supernova, pair pulsation supernova and pair instability supernova.

"""

__authors__ = [
    "Simone Bavera <Simone.Bavera@unige.ch>",
    "Jaime Roman Garza <Jaime.Roman@etu.unige.ch>",
    "Emmanouil Zapartas <ezapartas@gmail.com>",
    "Konstantinos Kovlakas <Konstantinos.Kovlakas@unige.ch>",
    "Devina Misra <devina.misra@unige.ch>",
    "Zepei Xing <Zepei.Xing@unige.ch>",
    "Jeffrey Andrews <jeffrey.andrews@northwestern.edu>",
    "Tassos Fragos <Anastasios.Fragkos@unige.ch>",
    "Matthias Kruckow <Matthias.Kruckow@unige.ch>",
    "Max Briel <max.briel@unige.ch>",
]

__credits__ = [
    "Michael Zevin <michael.zevin@ligo.org>",
    "Chase Kimball <charles.kimball@ligo.org",
    "Sam Imperato <samuelimperato2022@u.northwestern.edu>",
]


import os
import numpy as np
import scipy as sp
import copy
import pandas as pd

from posydon.utils.data_download import PATH_TO_POSYDON_DATA, data_download
import posydon.utils.constants as const
from posydon.utils.common_functions import (is_number, CO_radius,
    orbital_period_from_separation, inspiral_timescale_from_separation,
    separation_evol_wind_loss, calculate_Patton20_values_at_He_depl, rotate
)
from posydon.utils.limits_thresholds import (THRESHOLD_CENTRAL_ABUNDANCE,
    STATE_NS_STARMASS_UPPER_LIMIT, NEUTRINO_MASS_LOSS_UPPER_LIMIT
)

from posydon.binary_evol.binarystar import BINARYPROPERTIES
from posydon.binary_evol.singlestar import STARPROPERTIES, convert_star_to_massless_remnant
from posydon.binary_evol.SN.profile_collapse import (do_core_collapse_BH,
                                        get_ejecta_element_mass_at_collapse)
from posydon.binary_evol.flow_chart import (STAR_STATES_CO, STAR_STATES_CC,
                                            STAR_STATES_C_DEPLETION)

from posydon.grids.MODELS import MODELS
from posydon.utils.posydonerror import ModelError
from posydon.utils.posydonwarning import Pwarn
from posydon.utils.common_functions import set_binary_to_failed

from pandas import read_csv
from sklearn import neighbors
from scipy.interpolate import interp1d

import json

path_to_Sukhbold_datasets = os.path.join(PATH_TO_POSYDON_DATA,
                                         "Sukhbold+16/")

path_to_Patton_datasets = os.path.join(PATH_TO_POSYDON_DATA,
                                       "Patton+Sukhbold20/")

path_to_Couch_datasets = os.path.join(PATH_TO_POSYDON_DATA,
                                      "Couch+2020/")

MODEL = {
    # core collapse physics
    "mechanism": 'Patton&Sukhbold20-engine',
    "engine": 'N20',
    "PISN": "Marchant+19",
    "ECSN": "Podsiadlowski+04",
    "conserve_hydrogen_envelope" : False,
    "max_neutrino_mass_loss": NEUTRINO_MASS_LOSS_UPPER_LIMIT,
    "max_NS_mass": STATE_NS_STARMASS_UPPER_LIMIT,
    "use_interp_values": True,
    "use_profiles": True,
    "use_core_masses": True,
    "allow_spin_None" : False,
    "approx_at_he_depletion": False,
    # kick physics
    "kick": True,
    "kick_normalisation": 'one_over_mass',
    "sigma_kick_CCSN_NS": 265.0,
    "sigma_kick_CCSN_BH": 265.0,
    "sigma_kick_ECSN": 20.0,
    # other
    "verbose": False,
}


[docs] class StepSN(object): """The supernova step in POSYDON. Keyword Arguments ---------- mechanism : str Mechanism to perform the core-collapse on the star object and predict the supernova remnant outcome. Available options are: * 'Fryer+12-rapid' : The rapid supernova-engine described in [1]_ * 'Fryer+12-delayed' : The delayed supernova-engine described in [1]_ * 'direct' : The pre-supernova mass of the starr is collapsed into the remnant baryonic mass. * 'direct_he_core' : The pre-supernova He core mass of the starr is collapsed into the remnant baryonic mass. * 'Sukhbold+16-engine' : Uses the results from [2]_ to describe the collapse of the star. * 'Patton&Sukhbold20-engine': Uses the results from [5]_ to describe the collapse of the star. * 'Couch+20-engine': Uses the results from [6]_ to describe the collapse of the star. engine : str Engine used for supernova remnanrt outcome propierties for the Sukhbold+16-engineand and Patton&Sukhbold20-engine mechanisms. Available options: - 'N20' PISN : str Prescrition to take on the pair-instability supernova. Avialable options: - 'Marchant+19' : Descripes the pair-instability supernova as [3]_. mass_central_BH : double Central mass collapsed automatically on black-holes formed by direct collapse. max_neutrino_mass_loss : double Neutrino mass loss during the collapse of the proto neutron-star. kick : bool If True, the kick velocities are computed corresponding to the supernova event, else no kicks are taking into account for any supernova outcome. kick_normalisation : str Renormalise the kick by: 'one_minus_fallback' : (1-f_fb) 'one_over_mass' : 1.4/m_BH 'zero' : 0. 'one' : 1. 'NS_one_minus_fallback_BH_one': 1 for BH, (1-f_fb) for NS ECSN : str Prescription to determine the production of an electron-capture supernova. Avialable options: - 'Podsiadlowski+04': Determines the electron capture supernova in terms of the He core mass at pre-supernova, taking limits from [7]_. - 'Tauris+15': Determines the electron capture supernova in terms of the CO core mass at pre-supernova, taking the limits from [4]_. sigma_kick_CCSN_NS : double Standard deviation for a Maxwellian distribution to compute the kick velocities from NSs formed by Fe core-collapse supernova. sigma_kick_CCSN_BH : double Standard deviation for a Maxwellian distribution to compute the kick velocities from BHs formed by Fe core-collapse supernova. sigma_kick_ECSN : double Standard deviation for a Maxwellian distribution to compute the kick velocities from compact-object formed by electron-capture supernova. max_NS_mass : double Maximum neutron-star mass. use_interp_values : bool The outcome of core collpase was interpolated from a post processed MESA grid and stored in the star object in the mesa_step or detached_step (default). This option supports only default assumptions for all core collase mechanism. use_profiles : bool Perfrome the core collpase given a MESA profile. To use this option a MESA profile must be stored in the star object which is provided by nearest neighbor interpolation in the mesa_step or (TODO) interpolated in the detached_step. use_core_masses : bool This option uses the core masses at carbon depletion to determine the core collapse outcoume (classical population sythesis threatment). allow_spin_None : bool This option does not determine the spin during core collapse while setting other values like in use_core_masses. (used to avoid jumps in the spin for interpolator training because of missing profiles) approx_at_he_depletion : bool This option is relevant only for the mechanism Patton&Sukhbold20-engine. In case the core masses at he-depletion are not present in the star object, compute them from the history, else (approximation=True) approximate it from the core masses at C depletion. verbose : bool If True, the messages will be prited in the console. References ---------- .. [1] Fryer, C. L., Belczynski, K., Wiktorowicz, G., Dominik, M., Kalogera, V., & Holz, D. E. (2012). Compact remnant mass function: dependence on the explosion mechanism and metallicity. The Astrophysical Journal, 749(1), 91. .. [2] Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M., & Janka, H. T. (2016). Core-collapse supernovae from 9 to 120 solar masses based on neutrino-powered explosions. The Astrophysical Journal, 821(1), 38. .. [3] Marchant, P., Renzo, M., Farmer, R., Pappas, K. M., Taam, R. E., De Mink, S. E., & Kalogera, V. (2019). Pulsational pair-instability supernovae in very close binaries. The Astrophysical Journal, 882(1), 36. .. [4] Tauris, T. M., Langer, N., & Podsiadlowski, P. (2015). Ultra-stripped supernovae: progenitors and fate. Monthly Notices of the Royal Astronomical Society, 451(2), 2123-2144. .. [5] Patton, R. A. & Sukhbold, T. 2020, MNRAS, 499, 2803. Towards a realistic explosion landscape for binary population synthesis .. [6] Couch, S. M., Warren, M. L., & O’Connor, E. P. 2020, ApJ, 890, 127. Simulating Turbulence-aided Neutrino-driven Core-collapse Supernova Explosions in One Dimension .. [7] Podsiadlowski, P., Langer, N., Poelarends, A. J. T., Rappaport, S., Heger, A., and Pfahl, E. 2004, ApJ, 612, 1044. The Effects of Binary Evolution on the Dynamics of Core Collapse and Neutron Star Kicks """ def __init__(self, **kwargs): """Initialize a StepSN instance.""" # read kwargs to initialize the class if kwargs: for key in kwargs: if key not in MODEL: raise ValueError(key + " is not a valid parameter name!") for varname in MODEL: default_value = MODEL[varname] setattr(self, varname, kwargs.get(varname, default_value)) else: for varname in MODEL: default_value = MODEL[varname] setattr(self, varname, default_value) if self.max_neutrino_mass_loss is None: self.max_neutrino_mass_loss = 0 # Initializing core collapse # Available mechanisms for core-collapse supernova self.Fryer12_rapid = "Fryer+12-rapid" self.Fryer12_delayed = "Fryer+12-delayed" self.direct_collapse = "direct" self.direct_collapse_hecore = "direct_he_core" self.Sukhbold16_engines = "Sukhbold+16-engine" self.Patton20_engines = "Patton&Sukhbold20-engine" self.Couch20_engines = "Couch+20-engine" self.mechanisms = [ self.Fryer12_rapid, self.Fryer12_delayed, self.direct_collapse, self.direct_collapse_hecore, self.Sukhbold16_engines, self.Patton20_engines, self.Couch20_engines ] if self.mechanism in self.mechanisms: if self.mechanism in [ self.Fryer12_rapid, self.Fryer12_delayed, self.direct_collapse, self.direct_collapse_hecore, ]: self.Sukhbold_corecollapse_engine = None elif self.mechanism == self.Sukhbold16_engines: # set the path to the datasets for each supernova engine self.path_to_Sukhbold_datasets = path_to_Sukhbold_datasets self.Sukhbold_corecollapse_engine = Sukhbold16_corecollapse( self.engine, self.path_to_Sukhbold_datasets, self.verbose) elif self.mechanism == self.Couch20_engines: # set the path to the datasets for each supernova engine self.path_to_Couch_datasets = path_to_Couch_datasets # returns JSON object as # a dictionary self.Couch_corecollapse_engine = Couch20_corecollapse( turbulence_strength=self.engine, path_engine_dataset=self.path_to_Couch_datasets, verbose=self.verbose) elif self.mechanism == self.Patton20_engines: self.path_to_Patton_datasets = path_to_Patton_datasets def format_data_Patton20(file_name): """Format the Patton&Sukhbold,20 dataset for interpolation. Parameters ---------- file_name : str Name of the dataset file. Returns ------- CO_core_params : arr Array containing the carbon-oxygen core parameters in a grid of abundance and mass as columns. target_parameter : arr Array with the corresponding value of the target parameter giving the selected dataset. """ # Check if interpolation files exist filename = os.path.join(self.path_to_Patton_datasets, file_name) if not os.path.exists(filename): data_download() # Reading the dataset data = np.loadtxt(filename, skiprows=6, dtype='str') # Extracting the matrix with the values of the target # parameter target_matrix = data[1:].T[1:].T # Formating the target metrix values as a 1D array and # converting the values to float target = target_matrix.astype(float).ravel() # Extracting the values for the CO core parameters M_CO, X_CO = np.meshgrid(data[0][1:], data.T[0][1:]) # Stacking the CO core parameters to the corresponding grid # array that defines the injective relation between each # element of CO_core_params to the elements in target CO_core_params = (np.vstack( (X_CO.ravel(), M_CO.ravel())).T).astype(float) return CO_core_params, target if self.verbose: print('Loading the train dataset for engine mu4 and M4...') CO_core_params_mu4, mu4_target = format_data_Patton20( 'Kepler_mu4_table.dat') CO_core_params_M4, M4_target = format_data_Patton20( 'Kepler_M4_table.dat') n_neighbors = 5 if self.verbose: print('Training the classifier ...') self.M4_interpolator = neighbors.KNeighborsRegressor( n_neighbors, weights='distance') self.M4_interpolator.fit(CO_core_params_M4, M4_target) self.mu4_interpolator = neighbors.KNeighborsRegressor( n_neighbors, weights='distance') self.mu4_interpolator.fit(CO_core_params_mu4, mu4_target) if self.verbose: print('Done') else: raise ValueError("Invalid core-collapse mechanism given.") def __repr__(self): """Get the string representation of the class and any parameters.""" return "SN step (kick distribution: {})".format(self.kick_distribution) def _reset_other_star_properties(self, star): """Reset the properties of the star that is not being collapsed.""" star.lg_mdot = None star.lg_system_mdot = None def __call__(self, binary): """Perform the supernova step on a binary object. Parameters ---------- binary : instance of BinaryStar The binary to evolve. """ # consistency check # self.check() # read binary properties of interest # do the caclulations # update star/binary properties (e.g. period, eccentricity, masses) # Check if the binary event is calling correctly the SN_step, # this should occour only on the first or second core-collapse # CC1 and CC2 respectively. if binary.event == "CC1": # collapse star self.collapse_star(star=binary.star_1) self._reset_other_star_properties(star=binary.star_2) binary.update_star_states() elif binary.event == "CC2": # collapse star self.collapse_star(star=binary.star_2) self._reset_other_star_properties(star=binary.star_1) binary.update_star_states() else: raise ValueError("Something went wrong: " "invalid call of supernova step!") # do orbital_kick on the binary object if self.kick: self.orbital_kick(binary=binary) # Checks if the binary is not disrupted to compute the # inspiral time due to gravitational wave emission state1, state2 = binary.star_1.state, binary.star_2.state if binary.state == "disrupted" or state1 == "massless_remnant" or state2 == "massless_remnant": binary.inspiral_time = np.nan elif state1 in STAR_STATES_CO and state2 in STAR_STATES_CO: binary.inspiral_time = inspiral_timescale_from_separation( binary.star_1.mass, binary.star_2.mass, binary.separation, binary.eccentricity, ) # Cover the case where CC of the companion is immediately followed elif state1 in STAR_STATES_CO and state2 in STAR_STATES_C_DEPLETION: binary.event = "CC2" elif state1 in STAR_STATES_C_DEPLETION and state2 in STAR_STATES_CO: binary.event = "CC1"
[docs] def check(self): """Check the internal integrity and the values of the parameters.""" if self.kick_distribution is None: raise ValueError("Undefined supernova kick velocity distribution")
[docs] def collapse_star(self, star): """Collapse the star object into a compact object. This routine supports three options: 1. use_interp_values : True The outcome of core collpase was interpolated from a post processed MESA grid and stored in the star object in the mesa_step or detached_step (default). This option supports only default assumptions for all core collase mechanism. 2. use_profiles : False Perfrome the core collpase given a MESA profile. To use this option a MESA profile must be stored in the star object which is provided by nearest neighbor interpolation in the mesa_step or (TODO) interpolated in the detached_step. 3. use_core_masses : False This option uses the core masses at carbon depletion to determine the core collapse outcoume (classical population sythesis threatment). 4. allow_spin_None : False This option does not determine the spin during core collapse while setting other values like in use_core_masses. (used to avoid jumps in the spin for interpolator training because of missing profiles) Parameters ---------- star : object Star object containing the star properties. Returns ------- m_rem : double Remnant mass of the compact object in M_sun. This quantity accounts for the mass loss thorugh neutrino. state : string New state of the star object. """ state = star.state # after this function is called certain quantities shouldn't be None # type objects anymore for key in ['m_disk_accreted', 'm_disk_radiated']: if getattr(star, key) is None: setattr(star, key, np.nan) # Verifies if the star is in state state where it can # explode if state in STAR_STATES_CC: # if no profile is avaiable but interpolation quantities are, # use those, else continue with or without profile. if self.use_interp_values: # find MODEL_NAME corresponding to class variable MODEL_NAME_SEL = None for MODEL_NAME, MODEL in MODELS.items(): tmp = MODEL_NAME for key, val in MODEL.items(): if "use_" in key: continue if getattr(self, key) != val: if self.verbose: print(tmp, 'mismatch:', key, getattr(self, key), val) tmp = None break if tmp is not None: if self.verbose: print('matched to model:', tmp) MODEL_NAME_SEL = tmp # check if selected MODEL is supported if MODEL_NAME_SEL is None: raise ValueError('Your model assumptions are not' 'supported!') elif getattr(star, MODEL_NAME_SEL) is None: # NOTE: this option is needed to do the collapse # for stars evolved with the step_detached or # step_disrupted. # allow to continue with the collapse with profile # or core masses Pwarn(f'{MODEL_NAME_SEL}: The collapsed star ' 'was not interpolated! If use_profiles ' 'or use_core_masses is set to True, ' 'continue with the collapse.', "InterpolationWarning") else: MODEL_properties = getattr(star, MODEL_NAME_SEL) ## Check if SN_type mismatches the CO_type in MODEL or if interpolated MODEL properties are NaN ## If either are true, interpolated values cannot be used for this SN if (check_SN_CO_match(MODEL_properties['SN_type'], MODEL_properties['state']) and ~np.isnan(MODEL_properties['mass'])): for key, value in MODEL_properties.items(): setattr(star, key, value) if star.state == 'WD': for key in STARPROPERTIES: if key in ["he_core_mass"]: setattr(star, key, star.mass) elif key in ["co_core_mass"]: if star.center_he4 < THRESHOLD_CENTRAL_ABUNDANCE: setattr(star, key, star.mass) else: setattr(star, key, 0.) elif key not in ["state", "mass", "spin", "m_disk_accreted", "m_disk_radiated", "center_h1", "center_he4", "center_c12", "center_n14", "center_o16"]: setattr(star, key, None) else: for key in STARPROPERTIES: if key not in ["state", "mass", "spin", "m_disk_accreted", "m_disk_radiated"]: setattr(star, key, None) # No remnant if a PISN happens if star.SN_type == 'PISN': convert_star_to_massless_remnant(star=star) # the mass is set to None # but an orbital kick is still applied. # Since the mass is set to None, this will lead to a disruption # TODO: make it skip the kick caluclation if getattr(star, 'SN_type') != 'PISN': star.log_R = np.log10(CO_radius(star.mass, star.state)) return else: Pwarn(f'{MODEL_NAME_SEL}: The SN_type ' 'does not match the predicted CO, or the interpolated ' 'values for the SN remnant are NaN. ' 'If use_profiles or use_core_masses is set to True, ' 'continue with the collapse.', "ApproximationWarning") # Verifies the selection of core-collapse mechnism to perform # the collapse if self.mechanism in [ self.Fryer12_rapid, self.Fryer12_delayed, self.direct_collapse, self.direct_collapse_hecore, ]: # m_core = star.co_core_mass # this flag checks if a profile is available profile = star.profile # computes the baryonic remnant mass from the # PISN and PPISN prescription if the star will # experience such event m_PISN = self.PISN_prescription(star) # the baryonic remnant mass is computed in terms # of the core mass. m_rembar, star.f_fb, _ = self.compute_m_rembar(star, m_PISN) # check if a white dwarf has been born if star.SN_type == "WD": star.mass = m_rembar star.state = "WD" star.spin = 0. star.log_R = np.log10(CO_radius(star.mass, star.state)) for key in STARPROPERTIES: if key in ["he_core_mass"]: setattr(star, key, star.mass) elif key in ["co_core_mass"]: if star.center_he4 < THRESHOLD_CENTRAL_ABUNDANCE: setattr(star, key, star.mass) else: setattr(star, key, 0.) elif key not in ["state", "mass", "spin", "m_disk_accreted", "m_disk_radiated", "center_h1", "center_he4", "center_c12", "center_n14", "center_o16"]: setattr(star, key, None) return # check if the star was disrupted by the PISN if np.isnan(m_rembar): convert_star_to_massless_remnant(star=star) return # Computing the gravitational mass of the remnant # as in Lattimer & Yahil, 1989 m_grav = (20.0 / 3.0) * (np.sqrt(1.0 + 0.3 * m_rembar) - 1.0) if (m_rembar - m_grav) > self.max_neutrino_mass_loss: m_grav = m_rembar - self.max_neutrino_mass_loss # If the profile of the star is available then # it will be collapsed to get the information # on the compact object spin if self.use_profiles and profile is not None: delta_M = m_rembar - m_grav if delta_M > self.max_neutrino_mass_loss: delta_M = self.max_neutrino_mass_loss if m_grav >= self.max_NS_mass: mass_direct_collapse = self.max_NS_mass + delta_M final_BH = do_core_collapse_BH( star=star, mass_collapsing=m_rembar, mass_central_BH=mass_direct_collapse, neutrino_mass_loss=delta_M, max_neutrino_mass_loss=self.max_neutrino_mass_loss, verbose=self.verbose ) star.mass = final_BH[0] star.spin = final_BH[1] star.m_disk_accreted = final_BH[2] star.m_disk_radiated = final_BH[3] star.state = "BH" else: star.mass = m_grav star.spin = 0. star.m_disk_accreted = 0. star.m_disk_radiated = 0. star.state = 'NS' star.h1_mass_ej, star.he4_mass_ej = \ get_ejecta_element_mass_at_collapse(star,star.mass,verbose=self.verbose) elif self.use_core_masses: # If the profile is not available the star spin # is used to get the compact object spin star.mass = m_grav if m_grav >= self.max_NS_mass: # see Eq. 14, Fryer, C. L., Belczynski, K., Wiktorowicz, # G., Dominik, M., Kalogera, V., & Holz, D. E. (2012), ApJ, 749(1), 91. # assume the spin value is the AM of the star # convert to CGS units G = const.standard_cgrav c = const.clight Mo = const.Msun star.spin = (10**star.log_total_angular_momentum * c / (G * (m_grav * Mo) ** 2)) if star.spin > 1.0: if self.verbose: print("The spin exceeds 1, capping it to 1...") star.spin = 1.0 star.m_disk_accreted = 0.0 star.m_disk_radiated = 0.0 star.state = "BH" else: star.spin = 0.0 star.m_disk_accreted = 0.0 star.m_disk_radiated = 0.0 star.state = "NS" star.h1_mass_ej, star.he4_mass_ej = \ np.nan, np.nan elif self.allow_spin_None: # If the profile is not available and spin can stay # undetermined star.mass = m_grav star.spin = None star.m_disk_accreted = 0.0 star.m_disk_radiated = 0.0 if m_grav >= self.max_NS_mass: star.state = "BH" else: star.state = "NS" star.h1_mass_ej, star.he4_mass_ej = \ np.nan, np.nan else: for key in STARPROPERTIES: setattr(star, key, None) set_binary_to_failed(self.binary) raise ModelError("FAILED core collapse!") elif self.mechanism in [self.Sukhbold16_engines, self.Patton20_engines, self.Couch20_engines]: # The final remnant mass and and state # is computed by the selected mechanism # PISN and PPISN prescription m_PISN = self.PISN_prescription(star) m_rembar, star.f_fb, state = self.compute_m_rembar(star, m_PISN) star.state = state # check if a white dwarf has been born if star.SN_type == "WD": star.mass = m_rembar star.state = "WD" star.spin = 0. star.log_R = np.log10(CO_radius(star.mass, star.state)) for key in STARPROPERTIES: if key in ["he_core_mass"]: setattr(star, key, star.mass) elif key in ["co_core_mass"]: if star.center_he4 < THRESHOLD_CENTRAL_ABUNDANCE: setattr(star, key, star.mass) else: setattr(star, key, 0.) elif key not in ["state", "mass", "spin", "m_disk_accreted", "m_disk_radiated", "center_h1", "center_he4", "center_c12", "center_n14", "center_o16"]: setattr(star, key, None) return # check if the star was disrupted by the PISN if np.isnan(m_rembar): convert_star_to_massless_remnant(star=star) return # Computing the gravitational mass of the remnant # as in Lattimer & Yahil, 1989 m_grav = (20.0 / 3.0) * (np.sqrt(1.0 + 0.3 * m_rembar) - 1.0) if (m_rembar - m_grav) > self.max_neutrino_mass_loss: m_grav = m_rembar - self.max_neutrino_mass_loss # this flag checks if a profile is available profile = star.profile if self.use_profiles and profile is not None: delta_M = m_rembar - m_grav if delta_M > self.max_neutrino_mass_loss: delta_M = self.max_neutrino_mass_loss if m_grav >= self.max_NS_mass and star.state == "BH": mass_direct_collapse = self.max_NS_mass + delta_M final_BH = do_core_collapse_BH( star=star, mass_collapsing=m_rembar, mass_central_BH=mass_direct_collapse, neutrino_mass_loss=delta_M, max_neutrino_mass_loss=self.max_neutrino_mass_loss, verbose=self.verbose ) star.mass = final_BH[0] if m_grav != star.mass and self.verbose: print("The star formed a disk during the collapse " "and lost", round(final_BH[0] - m_rembar, 2), "M_sun.") star.spin = final_BH[1] star.m_disk_accreted = final_BH[2] star.m_disk_radiated = final_BH[3] elif star.state == "NS": star.mass = m_grav star.m_disk_accreted = 0.0 star.m_disk_radiated = 0.0 star.spin = 0.0 else: for key in STARPROPERTIES: setattr(star, key, None) set_binary_to_failed(self.binary) raise ModelError("Invalid core state: " + str(state)) star.h1_mass_ej, star.he4_mass_ej = \ get_ejecta_element_mass_at_collapse(star,star.mass,verbose=self.verbose) elif self.use_core_masses: star.mass = m_grav if m_grav >= self.max_NS_mass: # see Eq. 14, Fryer, C. L., Belczynski, K., Wiktorowicz, # G., Dominik, M., Kalogera, V., & Holz, D. E. (2012), ApJ, 749(1), 91. # assume the spin value is the AM of the star # convert to CGS units G = const.standard_cgrav c = const.clight Mo = const.Msun star.spin = (10**star.log_total_angular_momentum * c / (G * (m_grav * Mo) ** 2)) if star.spin > 1.0: if self.verbose: print("The spin exceed 1, capping it to 1...") star.spin = 1.0 star.m_disk_accreted = 0.0 star.m_disk_radiated = 0.0 star.state = "BH" else: star.spin = 0.0 star.m_disk_accreted = 0.0 star.m_disk_radiated = 0.0 star.state = "NS" star.h1_mass_ej, star.he4_mass_ej = \ np.nan, np.nan elif self.allow_spin_None: # If the profile is not available and spin can stay # undetermined star.mass = m_grav star.spin = None star.m_disk_accreted = 0.0 star.m_disk_radiated = 0.0 if m_grav >= self.max_NS_mass: star.state = "BH" else: star.state = "NS" star.h1_mass_ej, star.he4_mass_ej = \ np.nan, np.nan else: for key in STARPROPERTIES: setattr(star, key, None) set_binary_to_failed(self.binary) raise ModelError("FAILED core collapse!") else: set_binary_to_failed(self.binary) raise ModelError(f"The star cannot collapse: star state {state}.") star.metallicity = star.metallicity_history[-1] star.log_R = np.log10(CO_radius(star.mass, star.state)) for key in STARPROPERTIES: if key not in ["state", "mass", "spin", "log_R", "metallicity", "m_disk_accreted", "m_disk_radiated", "co_core_mass"]: setattr(star, key, None)
[docs] def PISN_prescription(self, star): """Compute baryonic remnant mass for the PPISN and PISN prescription. Parameters ---------- star : object Star object containing the star properties. Returns ------- m_PISN : double Maximum stellar mass in M_sun after the PPISN/PISN prescription. """ if self.PISN is None: return None else: # perform the PISN prescription in terms of the # He core mass at pre-supernova m_He_core = star.he_core_mass m_star = star.mass if self.PISN == "Marchant+19": if m_He_core >= 31.99 and m_He_core <= 61.10: # this is the 8th-order polynomial fit of table 1 # value, see COSMIC paper (Breivik et al. 2020) polyfit = ( - 6.29429263e5 + 1.15957797e5 * m_He_core - 9.28332577e3 * m_He_core ** 2.0 + 4.21856189e2 * m_He_core ** 3.0 - 1.19019565e1 * m_He_core ** 4.0 + 2.13499267e-1 * m_He_core ** 5.0 - 2.37814255e-3 * m_He_core ** 6.0 + 1.50408118e-5 * m_He_core ** 7.0 - 4.13587235e-8 * m_He_core ** 8.0 ) m_PISN = polyfit elif m_He_core > 61.10 and m_He_core < 124.12: # in Breivik et al. (2020) they qoute the CO core mass # range as 54.48<M_CO-core/Msun<113.29 here, but this # might cause gaps, when switching between core masses, # hence take the He-core masses from table 1 of Marchant # et al. (2019) m_PISN = np.nan else: # above the PISN gap we assume direct collapse of the if self.conserve_hydrogen_envelope: m_PISN = m_star else: m_PISN = m_He_core elif is_number(self.PISN) and m_He_core > self.PISN: m_PISN = self.PISN elif is_number(self.PISN) and 0.0 < m_He_core <= self.PISN: m_PISN = None else: raise ValueError("This choice {} of PISN is not available!".format(self.PISN)) if self.verbose: if m_PISN is None: print("") print("The star did NOT lose any mass because of " "PPIN or PISN.") elif not np.isnan(m_PISN): print("") print( "The star with initial mass {:2.2f}".format(m_He_core), "M_sun went through the PISN routine and lost", "{:2.2f} M_sun.".format(m_He_core - m_PISN), "The new m_rembar mass that will collapse to form a ", "CO object is {:2.2f} M_sun.".format(m_PISN)) else: print("The star was disrupted by the PISN prescription!") return m_PISN
[docs] def check_SN_type(self, m_core, m_He_core, m_star): """Get the remnant mass, fallback frac., state & SN type of the SN.""" if self.ECSN == "Tauris+15": # Label the supernova type as in Tauris et al. (2015), # considering their definition of metal core quivalent # to the mass of the CO core the the star object at pre-SN min_M_CO_ECSN = 1.37 # Msun from Takahashi et al. (2013) max_M_CO_ECSN = 1.43 # Msun from Tauris et al. (2015) if m_core < min_M_CO_ECSN: # The birth of a white dwarf is assumed SN_type = "WD" if m_core > 0.: # co_core_mass, note there will be no kick m_rembar = m_core elif m_He_core > 0.: m_rembar = m_He_core else: # this is catching H-rich_non_burning stars if m_star < 0.5: m_rembar = m_star if ((m_core < 0.)or(m_He_core < 0.)): Pwarn('Invalid co/He core masses! ' 'Setting m_WD=m_star!', "ApproximationWarning") else: Pwarn('co/He core masses are zero! ' 'Setting m_WD=m_star!', "ApproximationWarning") else: raise ModelError('Invalid co/He core masses! Cannot complete SN.') f_fb = 1.0 # no SN the no kick is assumed state = "WD" return m_rembar, f_fb, state, SN_type elif (m_core >= min_M_CO_ECSN) and (m_core <= max_M_CO_ECSN): SN_type = "ECSN" elif m_core > max_M_CO_ECSN: SN_type = "CCSN" else: raise ValueError( "The SN step was applied for an on object outside the " "domain of electron-capture SN and Fe core-collapse SN." ) elif self.ECSN == 'Podsiadlowski+04': # Limits on He core mass progenitors of ECSN, default on cosmic min_M_He_ECSN = 1.4 # Msun from Podsiadlowski+2004 max_M_He_ECSN = 2.5 # Msun from Podsiadlowski+2004 if m_He_core < min_M_He_ECSN: # The birth of a white dwarf is assumed SN_type = "WD" if m_core > 0.: # co_core_mass, note there will be no kick m_rembar = m_core elif m_He_core > 0.: m_rembar = m_He_core else: # this is catching H-rich_non_burning stars if m_star < 0.5: m_rembar = m_star if ((m_core < 0.)or(m_He_core < 0.)): Pwarn('Invalid co/He core masses! ' 'Setting m_WD=m_star!', "ApproximationWarning") else: Pwarn('co/He core masses are zero! ' 'Setting m_WD=m_star!', "ApproximationWarning") else: raise ModelError('Invalid co/He core masses! Cannot complete SN.') f_fb = 1.0 # no SN the no kick is assumed state = "WD" return m_rembar, f_fb, state, SN_type elif (m_He_core >= min_M_He_ECSN) and (m_He_core <= max_M_He_ECSN): SN_type = "ECSN" elif m_He_core > max_M_He_ECSN: SN_type = "CCSN" else: raise ValueError( "The SN step was applied for an on object outside the " "domain of electron-capture SN and Fe core-collapse SN." ) elif self.ECSN is None: # Here we consider that any CO core mass less that min_M_CO_ECSN # will produce a white dwarf min_M_CO_ECSN = 1.37 # Msun from Takahashi et al. (2013) if m_core < min_M_CO_ECSN: # The birth of a white dwarf is assumed SN_type = "WD" if m_core > 0.: # co_core_mass, note there will be no kick m_rembar = m_core elif m_He_core > 0.: m_rembar = m_He_core else: # this is catching H-rich_non_burning stars if m_star < 0.5: m_rembar = m_star if ((m_core < 0.)or(m_He_core < 0.)): Pwarn('Invalid co/He core masses! ' 'Setting m_WD=m_star!', "ApproximationWarning") else: Pwarn('co/He core masses are zero! ' 'Setting m_WD=m_star!', "ApproximationWarning") else: raise ModelError('Invalid co/He core masses! Cannot complete SN.') f_fb = 1.0 # no SN the no kick is assumed state = "WD" return m_rembar, f_fb, state, SN_type else: SN_type = "CCSN" else: raise ValueError("The given ECSN prescription is not available.") return None, None, None, SN_type
[docs] def compute_m_rembar(self, star, m_PISN): """Compute supernova remnant barionic mass. We follow the selected electron-capture and core-collapse mechanisms to get the remnant baryonic mass. Parameters ---------- star : object Star object containing the star properties. m_PISN : double Maximum stellar mass in M_sun after the PPISN/PISN prescription. Returns ------- m_rembar : double Barioninc mass of the remnant after the supernova in M_sun. This quantity does NOT take into account any neutrino lost, this will be taken into account in collapse_star(). f_fb : double Mass fraction falling back onto the compact object created in the supernova. The maximum value is 1 and means that all the barionic mass is collapsing to form the compact object. state : string Finall state of the stellar remnant after the supernova. """ if star.state in STAR_STATES_CC: m_star = star.mass # M_sun m_core = star.co_core_mass # M_sun m_He_core = star.he_core_mass # M_sun elif star.state_history[-1] in STAR_STATES_CC: m_star = star.mass_history[-1] # M_sun m_core = star.co_core_mass_history[-1] # M_sun m_He_core = star.he_core_mass_history[-1] # M_sun else: raise ValueError( "There is no information in the evolutionary history" "about STAR_STATES_CC." ) if m_core is None or np.isnan(m_core): # This should not happen raise ValueError("The CO core mass is not correct! CO core = {}". format(m_core)) # define the collapsing stellar mass: either the H or He core mass if self.conserve_hydrogen_envelope: m_collapsing = m_star else: m_collapsing = m_He_core m_rembar, f_fb, state, star.SN_type = self.check_SN_type( m_core=m_core, m_He_core=m_He_core, m_star=m_star) if star.SN_type == "WD": return m_rembar, f_fb, state # Eq. 15-17 from Fryer, C. L., Belczynski, K., Wiktorowicz, # G., Dominik, M., Kalogera, V., & Holz, D. E. (2012), ApJ, 749(1), 91. if self.mechanism == self.Fryer12_rapid: # Mass of the proto-remnant as Giacobbo N., Mapelli M., 2020, ApJ, 891, 141 m_proto = 1.1 if star.SN_type == "ECSN": if self.ECSN == 'Podsiadlowski+04': m_proto = 1.38 else: m_proto = m_core m_fb = 0.0 # as in Giacobbo & Mapelli 2020 for ECSN f_fb = 0.0 elif m_core < 2.5: m_fb = 0.2 f_fb = m_fb / (m_collapsing - m_proto) elif m_core >= 2.5 and m_core < 6.0: m_fb = 0.286 * m_core - 0.514 f_fb = m_fb / (m_collapsing - m_proto) elif m_core >= 6.0 and m_core < 7.0: f_fb = 1.0 m_fb = f_fb * (m_collapsing - m_proto) elif m_core >= 7.0 and m_core < 11.0: a = 0.25 - 1.275 / (m_collapsing - m_proto) b = -11.0 * a + 1.0 f_fb = a * m_core + b m_fb = f_fb * (m_collapsing - m_proto) elif m_core >= 11.0: f_fb = 1.0 m_fb = f_fb * (m_collapsing - m_proto) m_rembar = m_proto + m_fb state = None # Eq. 17-20, from Fryer, C. L., Belczynski, K., Wiktorowicz, # G., Dominik, M., Kalogera, V., & Holz, D. E. (2012), ApJ, 749(1), 91. elif self.mechanism == self.Fryer12_delayed: if m_core < 3.5: m_proto = 1.2 elif m_core >= 3.5 and m_core < 6.0: m_proto = 1.3 elif m_core >= 6 and m_core < 11.0: m_proto = 1.4 elif m_core >= 11.0: m_proto = 1.6 if star.SN_type == "ECSN": if self.ECSN == 'Podsiadlowski+04': m_proto = 1.38 else: m_proto = m_core m_fb = 0.0 # as in Giacobbo & Mapelli 2020 for ECSN f_fb = 0.0 elif m_core < 2.5: m_fb = 0.2 f_fb = m_fb / (m_collapsing - m_proto) elif m_core >= 2.5 and m_core < 3.5: m_fb = 0.5 * m_core - 1.05 f_fb = m_fb / (m_collapsing - m_proto) elif m_core >= 3.5 and m_core < 11.0: a = 0.133 - 0.093 / (m_collapsing - m_proto) b = -11.0 * a + 1.0 f_fb = a * m_core + b m_fb = f_fb * (m_collapsing - m_proto) elif m_core > 11.0: f_fb = 1.0 m_fb = f_fb * (m_collapsing - m_proto) m_rembar = m_proto + m_fb state = None # direct collapse and f_fb = 1. (no kicks) elif self.mechanism == self.direct_collapse: m_rembar = m_collapsing f_fb = 1.0 state = None # Collapse prescription from the results of # Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M., & Janka, H. T. (2016). 821(1), 38. elif self.mechanism == self.Sukhbold16_engines: if star.SN_type == "ECSN": if self.ECSN == 'Podsiadlowski+04': m_proto = 1.38 else: m_proto = m_core m_fb = 0.0 f_fb = 0.0 m_rembar = m_proto + m_fb state = 'NS' else: m_rembar, f_fb, state = self.Sukhbold_corecollapse_engine(star, self.conserve_hydrogen_envelope) # Collapse prescription from the results of # Couch, S. M., Warren, M. L., & O’Connor, E. P. 2020, ApJ, 890, 127 elif self.mechanism == self.Couch20_engines: if star.SN_type == "ECSN": if self.ECSN == 'Podsiadlowski+04': m_proto = 1.38 else: m_proto = m_core m_fb = 0.0 f_fb = 0.0 m_rembar = m_proto + m_fb state = 'NS' else: m_rembar, f_fb, state = self.Couch_corecollapse_engine(star, self.conserve_hydrogen_envelope) elif self.mechanism == self.Patton20_engines: if star.SN_type == "ECSN": if self.ECSN == 'Podsiadlowski+04': m_proto = 1.38 else: m_proto = m_core f_fb = 0.0 m_fb = 0.0 m_rembar = m_proto + m_fb state = 'NS' else: m_rembar, f_fb, state = self.Patton20_corecollapse(star, self.engine, self.conserve_hydrogen_envelope) else: raise ValueError("Mechanism %s not supported." % self.mechanism) # check PISN if m_PISN is not None: if pd.isna(m_PISN): m_rembar = m_PISN star.SN_type = "PISN" elif m_rembar > m_PISN: m_rembar = m_PISN star.SN_type = "PPISN" return m_rembar, f_fb, state
[docs] def orbital_kick(self, binary): """Do the orbital kick. This function computes the supernova step of the binary object [1]_, [2]_. It checks which binary_state reached the core collapse flag, either CC1 or CC2, and runs the step accordingly updating the binary object. Geometry: We work in a right-handed coordinate system. The collapsing helium star, here M_he_star, lies on the origin. The companion, here M_companion, lies on the negative X axis at rest. The relative velocity of the M_he_star with respect to M_companion lies in the X-Y plane, with vY>0. The orbital angular momentum vector is in Z direction, which completes the right-handed coordinate system. psi: The angle in the orbital plane between the X axis and the pre-core collapse relative velocity. (psi = pi/2 points in Y direction) theta : The polar angle between the kick velocity and the pre-core collapse relative velocity of the M_he_star with respect to M_companion. phi : The corresponding azimuthal angle such that phi=0 is on the Z axis. tilt : The angle between pre- and post- supernova orbital angular momentum vectors Parameters ---------- binary : object Binary object containing the binary properties and the two star objects. References ---------- .. [1] Kalogera, V. 1996, ApJ, 471, 352 .. [2] Wong, T.-W., Valsecchi, F., Fragos, T., & Kalogera, V. 2012, ApJ, 747, 111 """ # Check that the binary_state is calling correctly the SN_step if binary.event != "CC1" and binary.event != "CC2": raise ValueError("Something went wrong: invalid call of supernova step!") if binary.event == "CC1": if binary.star_1.SN_type == "WD": # compute the new separaiton prior to reseting the binary prop. new_separation = separation_evol_wind_loss( binary.star_1.mass, binary.star_1.mass_history[-1], binary.star_2.mass, binary.separation) new_orbital_period = orbital_period_from_separation( new_separation, binary.star_1.mass, binary.star_2.mass ) for key in BINARYPROPERTIES: if key not in ['V_sys', 'nearest_neighbour_distance', 'state']: setattr(binary, key, None) # if key is 'nearest_neighbour_distance': # setattr(binary, key, ['None', 'None', 'None']) binary.separation = new_separation if binary.state != "disrupted" and binary.state != "initially_single_star" and binary.state != "merged": binary.state = "detached" binary.event = None binary.time = binary.time_history[-1] binary.eccentricity = binary.eccentricity_history[-1] # TODO: in feature we will make the orbital period a callable # property binary.orbital_period = new_orbital_period binary.mass_transfer_case = 'None' return # load relevant data # star1 has already collapsed into a compact object, look in the # history of the star to find the properties before supernova if binary.star_1.state_history[-1] in STAR_STATES_CC: M_he_star = binary.star_1.mass_history[-1] # Mcore = binary.star_1.co_core_mass_history[-1] else: raise ValueError( "There is no information in the evolutionary history " "about STAR_STATES_CC." ) M_compact_object = binary.star_1.mass M_companion = binary.star_2.mass # check if a kick is passed, otherwise generate it if not binary.star_1.natal_kick_array[0] is None: Vkick = binary.star_1.natal_kick_array[0] else: # Draw a random orbital kick # Vkick is the kick velocity with components Vkx, Vky, Vkz in # the above coordinate system if binary.star_1.SN_type == "ECSN": # Kick for electron-capture SN Vkick = self.generate_kick( star=binary.star_1, sigma=self.sigma_kick_ECSN ) elif ((binary.star_1.SN_type == "CCSN") or (binary.star_1.SN_type == "PPISN") or (binary.star_1.SN_type == "PISN")): if binary.star_1.state == 'NS': sigma = self.sigma_kick_CCSN_NS elif binary.star_1.state == 'BH': sigma = self.sigma_kick_CCSN_BH elif binary.star_1.state == 'massless_remnant': # No kick on a massless object sigma = None else: raise ValueError("CCSN/PPISN/PISN only for NS/BH.") # Kick for core-collapse SN Vkick = self.generate_kick( star=binary.star_1, sigma=sigma ) elif binary.star_1.SN_type == "WD": # Kick for white dwarfs (allways f_fb = 1 => Vkick = 0) Vkick = 0.0 else: raise ValueError("The SN type is not ECSN neither CCSN.") binary.star_1.natal_kick_array[0] = Vkick if not binary.star_1.natal_kick_array[1] is None: phi = binary.star_1.natal_kick_array[1] else: phi = np.random.uniform(0, 2 * np.pi) binary.star_1.natal_kick_array[1] = phi if not binary.star_1.natal_kick_array[2] is None: cos_theta = np.cos(binary.star_1.natal_kick_array[2]) else: cos_theta = np.random.uniform(-1, 1) binary.star_1.natal_kick_array[2] = np.arccos(cos_theta) # generate random point in the orbit where the kick happens if not binary.star_1.natal_kick_array[3] is None: mean_anomaly = binary.star_1.natal_kick_array[3] # check that ONLY one value is passed and is of type float if not isinstance(mean_anomaly, float): raise ValueError("mean_anomaly must be a single float value.") else: mean_anomaly = np.random.uniform(0, 2 * np.pi) binary.star_1.natal_kick_array[3] = mean_anomaly elif binary.event == "CC2": if binary.star_2.SN_type == "WD": # compute new properties before resting existing binary prop. new_separation = separation_evol_wind_loss( binary.star_2.mass, binary.star_2.mass_history[-1], binary.star_1.mass, binary.separation) new_orbital_period = orbital_period_from_separation( new_separation, binary.star_1.mass, binary.star_2.mass ) for key in BINARYPROPERTIES: if key not in ['V_sys', 'nearest_neighbour_distance', 'state']: setattr(binary, key, None) # if key is 'nearest_neighbour_distance': # setattr(binary, key, ['None', 'None', 'None']) binary.separation = new_separation if binary.state != "disrupted" and binary.state != "initially_single_star" and binary.state != "merged": binary.state = "detached" binary.event = None binary.time = binary.time_history[-1] binary.eccentricity = binary.eccentricity_history[-1] # TODO: is the following to be noted? # in future we will make the orbital period a callable property binary.orbital_period = new_orbital_period binary.mass_transfer_case = 'None' return # load relevant data # star1 has already collapsed into a compact object, look in the # history of the star to find the properties before supernova if binary.star_2.state_history[-1] in STAR_STATES_CC: M_he_star = binary.star_2.mass_history[-1] # Mcore = binary.star_2.co_core_mass_history[-1] else: raise ValueError( "There is no information in the evolutionary history " "about STAR_STATES_CC." ) M_compact_object = binary.star_2.mass M_companion = binary.star_1.mass # check if a kick is passed, otherwise generate it if not binary.star_2.natal_kick_array[0] is None: Vkick = binary.star_2.natal_kick_array[0] else: # Draw a random orbital kick # Vkick is the kick velocity with components Vkx, Vky, Vkz in # the above coordinate system if binary.star_2.SN_type == "ECSN": # Kick for electron-capture SN Vkick = self.generate_kick(star=binary.star_2, sigma=self.sigma_kick_ECSN) elif ((binary.star_2.SN_type == "CCSN") or (binary.star_2.SN_type == "PPISN") or (binary.star_2.SN_type == "PISN")): if binary.star_2.state == 'NS': sigma = self.sigma_kick_CCSN_NS elif binary.star_2.state == 'BH': sigma = self.sigma_kick_CCSN_BH elif binary.star_2.state == 'massless_remnant': # No kick on a massless object sigma = None else: raise ValueError("CCSN/PPISN/PISN only for NS/BH.") # Kick for core-collapse SN Vkick = self.generate_kick(star=binary.star_2, sigma=sigma) else: raise ValueError("The SN type is not ECSN neither CCSN.") binary.star_2.natal_kick_array[0] = Vkick if not binary.star_2.natal_kick_array[1] is None: phi = binary.star_2.natal_kick_array[1] else: phi = np.random.uniform(0, 2 * np.pi) binary.star_2.natal_kick_array[1] = phi if not binary.star_2.natal_kick_array[2] is None: cos_theta = np.cos(binary.star_2.natal_kick_array[2]) else: cos_theta = np.random.uniform(-1, 1) binary.star_2.natal_kick_array[2] = np.arccos(cos_theta) # generate random point in the orbit where the kick happens if not binary.star_2.natal_kick_array[3] is None: mean_anomaly = binary.star_2.natal_kick_array[3] # check that ONLY one value is passed and is of type float if not isinstance(mean_anomaly, float): raise ValueError("mean_anomaly must be a single float value.") else: mean_anomaly = np.random.uniform(0, 2 * np.pi) binary.star_2.natal_kick_array[3] = mean_anomaly # update the orbit if binary.state == "disrupted" or binary.state == "initially_single_star" or binary.state == "merged": #the binary was already disrupted before the SN # update the binary object which was disrupted already before the SN for key in BINARYPROPERTIES: if key not in ('nearest_neighbour_distance','state'): setattr(binary, key, None) #binary.state = "disrupted" binary.event = None binary.separation = np.nan binary.eccentricity = np.nan binary.V_sys = np.array([0, 0, 0]) binary.time = binary.time_history[-1] binary.orbital_period = np.nan binary.mass_transfer_case = 'None' binary.first_SN_already_occurred = True else: # The binary exist: flag_binary is True if the binary is not disrupted flag_binary = True # eccentricity before the SN epre = binary.eccentricity # the orbital semimajor axis is the orbital separation Apre = binary.separation # Eq 16, Wong, T.-W., Valsecchi, F., Fragos, T., & Kalogera, V. 2012, ApJ, 747, 111 # for eccentric anomaly E_ma = sp.optimize.brentq( lambda x: mean_anomaly - x + epre * np.sin(x), 0, 2 * np.pi ) # Eq 15, Wong, T.-W., Valsecchi, F., Fragos, T., & Kalogera, V. 2012, ApJ, 747, 111 # orbital separation at the time of the exlosion rpre = Apre * (1.0 - epre * np.cos(E_ma)) true_anomaly = 2 * np.arctan( np.sqrt((1 + epre) / (1 - epre)) * np.tan(E_ma / 2) ) # load constants in CGS G = const.standard_cgrav # Convert inputs to CGS M_he_star = M_he_star * const.Msun M_companion = M_companion * const.Msun M_compact_object = M_compact_object * const.Msun Apre = Apre * const.Rsun Vkick = Vkick * const.km2cm rpre = rpre * const.Rsun Mtot_pre = M_he_star + M_companion Mtot_post = M_compact_object + M_companion # get useful quantity sin_theta = np.sqrt(1 - (cos_theta ** 2)) # Eq 1, in Kalogera, V. 1996, ApJ, 471, 352 # extended to Eq 17 in Wong, T.-W., Valsecchi, F., Fragos, T., & Kalogera, V. 2012, ApJ, 747, 111 # Vr is velocity of preSN He core relative to M_companion, NOT necessarily # in the direction of the Y axis if eccentric # Eq from conservation of energy Vr = np.sqrt(G * (Mtot_pre) * (2.0 / rpre - 1.0 / Apre)) # Eq 18, Wong, T.-W., Valsecchi, F., Fragos, T., & Kalogera, V. 2012, ApJ, 747, 111 # psi is the polar angle of the position vector of the CO with respect # to its pre-SN orbital velocity in the companions frame. i.e. angle between Vr and X axis # If epre = 0, sin_psi should be 1 # Eq from setting specific angular momentum r X Vr = sqrt(G*M*A*(1-e**2)) sin_psi = np.round( np.sqrt(G * (Mtot_pre) * (1 - epre ** 2) * Apre) / (rpre * Vr), 5) cos_psi = np.sqrt(1 - sin_psi ** 2) # Allow for -cos_psi (Vr in the -X, +Y quadrant) if E_ma > np.pi: cos_psi *= -1 # Eq 3, in Kalogera, V. 1996, ApJ, 471, 352 # extended to Eq 13, in Wong, T.-W., Valsecchi, F., Fragos, T., & Kalogera, V. 2012, ApJ, 747, 111 # get the orbital separation post SN # Eq from conservation of energy Apost = ((2.0 / rpre) - (((Vkick ** 2) + (Vr ** 2) + (2 * (Vkick * cos_theta) * Vr)) / (G * Mtot_post)) ) ** -1 # get kicks componets in the coordinate system Vkx = Vkick * (sin_theta * np.sin(phi) * sin_psi + cos_theta * cos_psi) Vky = Vkick * (-sin_theta * np.sin(phi) * cos_psi + cos_theta * sin_psi) Vkz = Vkick * sin_theta * np.cos(phi) # Eq 4, in Kalogera, V. 1996, ApJ, 471, 352 # extended to Eq 14 in Wong, T.-W., Valsecchi, F., Fragos, T., & Kalogera, V. 2012, ApJ, 747, 111 # get the eccentricity post SN # Eq from setting specific angular momentum r X Vr = sqrt(G*M*A*(1-e**2)) x = ((Vkz ** 2 + (Vky + Vr * sin_psi)** 2) * rpre ** 2 / (G * Mtot_post * Apost)) # catch negative values, i.e. disrupted binaries if 1.-x < 0.: epost = np.nan else: epost = np.sqrt(1 - x) # Compute COM velocity, VS, post SN # VS_pre in COM frame is 0. So VS_post in COM frame is # VS_post - VS_pre in our working frame VC0x = M_he_star * Vr * cos_psi / Mtot_pre VC0y = M_he_star * Vr * sin_psi / Mtot_pre VC0z = 0 VC1x = M_compact_object * (Vkx + Vr * cos_psi) / Mtot_post VC1y = M_compact_object * (Vky + Vr * sin_psi) / Mtot_post VC1z = M_compact_object * Vkz / Mtot_post VSx = VC1x - VC0x VSy = VC1y - VC0y VSz = VC1z - VC0z # V_sys = np.sqrt(VSx ** 2 + VSy ** 2 + VSz ** 2) # Calculate the angle between the pre and post-SN orbital angular momentum vectors # Lpre || Z axis # Lpost || X axis cross the post SN velocity of the compact object # cos(tilt) = Lpre dot Lpost / ||Lpre||||Lpost|| # For epre=0 (sin_psi=1), reduces to Eq 4, in Kalogera, V. 1996, ApJ, 471, 352 tilt = np.arccos((Vky + Vr * sin_psi) / np.sqrt( Vkz ** 2 + (Vky + Vr * sin_psi) ** 2 )) # Track direction of tilt if Vkz < 0: tilt *= -1 def SNCheck( M_he_star, M_companion, M_compact_object, rpre, Apost, epost, Vr, Vkick, cos_theta, verbose, ): """Check that the binary is not disrupted [1]_, [2]_. Parameters ---------- M_he_star : double Helium star mass before the SN in g. M_companion : double Companion star mass in g. M_compact_object : double Compact object mass left by the SN in g. rpre : double Oribtal separation at the time of the exlosion in cm. If the eccentricity pre SN is 0 this correpond to Apre. Apost : double Orbital separtion after the SN in cm. epost : double Eccentricity after the SN. Vr : double Velocity of pre-SN He core relative to M_companion, directed along the positive y axis in cm/s. Vkick : double Kick velocity in cm/s. cos_theta : double The cosine of the angle between pre- & post-SN orbital planes. Returns ------- flag_binary : bool flag_binary is True if the binary is not disrupted. References ---------- .. [1] Willems, B., Henninger, M., Levin, T., et al. 2005, ApJ, 625, 324 .. [2] Kalogera, V. & Lorimer, D.R. 2000, ApJ, 530, 890 """ # flag_binary is True if the binary is not disrupted flag_binary = True Mtot_pre = M_he_star + M_companion Mtot_post = M_compact_object + M_companion # Define machine precision (we can probaly lower this number) err = const.SNcheck_ERR # SNflag1: Eq. 21, Willems, B., Henninger, M., Levin, T., et al. 2005, ApJ, 625, 324 (with typo fixed) # from Eq. 10, Flannery, B.P. & van den Heuvel, E.P.J. 1975, A&A, 39, 61 # Continuity demands post-SN orbit to pass through preSN positions. # Updated to work for eccentric orbits, # see Eq. 15 in Wong, T.-W., Valsecchi, F., Fragos, T., & Kalogera, V. 2012, ApJ, 747, 111 SNflag1 = (1 - epost - rpre / Apost <= err) and ( rpre / Apost - (1 + epost) <= err ) # SNflag2: Equations 22-23, Willems, B., Henninger, M., Levin, T., et al. 2005, ApJ, 625, 324 # (see, e.g., Kalogera, V. & Lorimer, D.R. 2000, ApJ, 530, 890) # The derivation in the papers above assume a circular pre SN # orbit. Hence, need a correction for eccentric pre SN orbits: eccentric_orbit_correction = Vr**2 * rpre / (G * Mtot_pre) tmp1 = 2 - Mtot_pre / Mtot_post * (Vkick / Vr - 1) ** 2\ * eccentric_orbit_correction tmp2 = 2 - Mtot_pre / Mtot_post * (Vkick / Vr + 1) ** 2\ * eccentric_orbit_correction SNflag2 = ((rpre / Apost - tmp1 < err) and (err > tmp2 - rpre / Apost)) # SNflag3: check that epost does not exeed 1 or is nan if epost >= 1.0 or np.isnan(epost): SNflag3 = False else: SNflag3 = True SNflags = [SNflag1, SNflag2, SNflag3] if verbose: print() print("The orbital checks are:", SNflags) print() print("1. Post-SN orbit must pass through pre-SN positions.") print("2. Lower and upper limits on amount of orbital " "contraction or expansion that can take place for a " "given amount of mass loss and a given magnitude of the " "kick velocity.") print("3. Checks that e_post is not larger than 1 or nan.") # check if the supernova is valid and doesn't disrupt the system if not all(SNflags): flag_binary = False return flag_binary # check if the binary is disrupted flag_binary = SNCheck(M_he_star, M_companion, M_compact_object, rpre, Apost, epost, Vr, Vkick, cos_theta, verbose=self.verbose) # update the binary object which was bound at least before the SN #Check if this is the first SN for key in BINARYPROPERTIES: if key not in ['nearest_neighbour_distance','event']: setattr(binary, key, None) if flag_binary: # update the tilt if not binary.first_SN_already_occurred: # update the tilt binary.star_1.spin_orbit_tilt_first_SN = tilt binary.star_2.spin_orbit_tilt_first_SN = tilt binary.true_anomaly_first_SN = true_anomaly binary.first_SN_already_occurred = True else: if binary.event == 'CC2': # Assume progenitor has aligned with the preSN orbital angular momentum binary.star_2.spin_orbit_tilt_second_SN = tilt binary.star_1.spin_orbit_tilt_second_SN = self.get_combined_tilt( tilt_1 = binary.star_1.spin_orbit_tilt_first_SN, tilt_2 = tilt, true_anomaly_1 = binary.true_anomaly_first_SN, true_anomaly_2 = true_anomaly ) binary.true_anomaly_second_SN = true_anomaly elif binary.event == 'CC1': # Assume progenitor has aligned with the preSN orbital angular momentum binary.star_1.spin_orbit_tilt_second_SN = tilt binary.star_2.spin_orbit_tilt_second_SN = self.get_combined_tilt( tilt_1 = binary.star_1.spin_orbit_tilt_first_SN, tilt_2 = tilt, true_anomaly_1 = binary.true_anomaly_first_SN, true_anomaly_2 = true_anomaly ) binary.true_anomaly_second_SN = true_anomaly else: raise ValueError(f"Binary is in SN step but binary state is not CC1 or CC2: {binary.state}") # compute new orbital period before reseting the binary properties binary.state = "detached" binary.event = None binary.separation = Apost / const.Rsun binary.eccentricity = epost binary.V_sys = np.array([VSx / const.km2cm, VSy / const.km2cm, VSz / const.km2cm]) binary.time = binary.time_history[-1] # in future we will make the orbital period a callable property new_orbital_period = orbital_period_from_separation( binary.separation, binary.star_1.mass, binary.star_2.mass) binary.orbital_period = new_orbital_period binary.mass_transfer_case = 'None' else: # update the tilt if not binary.first_SN_already_occurred: binary.star_1.spin_orbit_tilt_first_SN = np.nan binary.star_2.spin_orbit_tilt_first_SN = np.nan binary.first_SN_already_occurred = True else: binary.star_1.spin_orbit_tilt_second_SN = np.nan binary.star_2.spin_orbit_tilt_second_SN = np.nan binary.state = "disrupted" binary.event = None binary.separation = np.nan binary.eccentricity = np.nan binary.V_sys = np.array([0, 0, 0]) binary.time = binary.time_history[-1] binary.orbital_period = np.nan binary.mass_transfer_case = 'None'
""" ##### Generating the CCSN SN kick of a single star ##### """
[docs] def generate_kick(self, star, sigma): """Draw a kick from a Maxwellian distribution. We follow Hobbs G., Lorimer D. R., Lyne A. G., Kramer M., 2005, MNRAS, 360, 974 and choose sigma = 265 km/s We rescale the kicks by 1 - f_fb as in Eq. 21 of Fryer, C. L., Belczynski, K., Wiktorowicz, G., Dominik, M., Kalogera, V., & Holz, D. E. (2012), ApJ, 749(1), 91. Parameters ---------- star : object Star object containing the star properties. Returns ------- Vkick : double Natal orbital kick in km/s. """ if self.kick_normalisation == 'one_minus_fallback': # Normalization from Eq. 21, Fryer, C. L., Belczynski, K., Wiktorowicz, # G., Dominik, M., Kalogera, V., & Holz, D. E. (2012), ApJ, 749(1), 91. norm = (1.0 - star.f_fb) elif self.kick_normalisation == 'one_over_mass': if star.state == 'BH': norm = 1.4/star.mass else: norm = 1.0 elif self.kick_normalisation == 'NS_one_minus_fallback_BH_one': if star.state == 'BH': norm = 1. else: # Normalization from Eq. 21, Fryer, C. L., Belczynski, K., Wiktorowicz, # G., Dominik, M., Kalogera, V., & Holz, D. E. (2012), ApJ, 749(1), 91. norm = (1.0 - star.f_fb) elif self.kick_normalisation == 'one': norm = 1. elif self.kick_normalisation == 'zero': norm = 0. else: raise ValueError('kick_normalisation option not supported!') if sigma is not None: # f_fb = self.compute_m_rembar(star, None)[1] Vkick = norm * sp.stats.maxwell.rvs(loc=0., scale=sigma, size=1)[0] else: Vkick = 0.0 return Vkick
[docs] def get_combined_tilt(self, tilt_1, tilt_2, true_anomaly_1, true_anomaly_2): """Get the combined spin-orbit-tilt after two supernovae, assuming the spin as not realigned with the orbital angular momentum after SN1 Parameters ---------- tilt_1: float Angle, in radians, through which the orbital plane was tilted by SN1 tilt_2: float Angle, in radians, through which the orbital plane was tilted by SN2 true_anomaly_1: float Angle, in radians, of the true anomaly at the moment of SN1 true_anomaly_2: float Angle, in radians, of the true anomaly at the moment of SN2 Returns ------- combined_tilt: float Angle, in radians, between the spin and orbital angular momentum after SN2 """ z_prime = rotate((1,0,0), tilt_1).dot((0,0,1)) x_prime = rotate(z_prime, true_anomaly_2-true_anomaly_1).dot((1,0,0)) cos_tilt = np.dot((0,0,1),rotate(x_prime, tilt_2).dot(z_prime)) combined_tilt = np.arccos(cos_tilt) return combined_tilt
[docs] def C_abundance_for_H_stars(self, CO_core_mass): """Get the C abundance for a H-star given it's CO core mass.""" return 0.20/CO_core_mass + 0.15
[docs] def C_abundance_for_He_stars(self, CO_core_mass): """Get the C abundance for a He-star given it's CO core mass.""" return -0.084 * np.log(CO_core_mass) + 0.4
[docs] def get_CO_core_params(self, star, approximation=False): """Get the CO core mass and C abundance at the pre-supernova phase. If the two parameters are available in the star's profile, perform the Patton&Sukhbold,20 core-collapse. If the CO core mass is available but not the C abundance then the latter is computed from the formulas at Patton&Sukhbold,20. Parameters ---------- star : obj Star object of a collapsing star containing the MESA profile. approximation : bool In case the core masses at he-depletion are not present in the star object, compute them from the history default behaviour, else (approximation=True) approximate it from the core masses at C depletion. Returns ------- CO_core_mass : float Mass of the CO core at He depletion == C core ignition. C_core_abundance : float C abundance of the CO core He depletion == C core ignition. """ if approximation: CO_core_mass = star.co_core_mass # at C_depletion, which is assumed to be close to He depletion if ("H-rich" in star.state) or ("H-rich" in star.state_history[-1]): C_core_abundance = self.C_abundance_for_H_stars(CO_core_mass) elif ("stripped_He" in star.state) or ("stripped_He" in star.state_history[-1]): C_core_abundance = self.C_abundance_for_He_stars(CO_core_mass) else: raise ValueError("star.state at CC should contain either 'H-rich' or 'stripped_He' ") elif ((star.avg_c_in_c_core_at_He_depletion is not None) and (star.co_core_mass_at_He_depletion is not None)): C_core_abundance = star.avg_c_in_c_core_at_He_depletion CO_core_mass = star.co_core_mass_at_He_depletion else: calculate_Patton20_values_at_He_depl(star) C_core_abundance = star.avg_c_in_c_core_at_He_depletion CO_core_mass = star.co_core_mass_at_He_depletion if (C_core_abundance is None) or (CO_core_mass is None): raise ModelError('The history did not contain core masses at' f' He depletion! {CO_core_mass}' f' {C_core_abundance}') return CO_core_mass, C_core_abundance
[docs] def get_M4_mu4_Patton20(self, CO_core_mass, C_core_abundance): """Get the M4 and mu4 using Patton+20.""" M4 = self.M4_interpolator.predict([[C_core_abundance, CO_core_mass]]) mu4 = self.mu4_interpolator.predict([[C_core_abundance, CO_core_mass]]) return M4, mu4
[docs] def Patton20_corecollapse(self, star, engine, conserve_hydrogen_envelope=False): """Compute supernova final remnant mass and fallback fraction. It uses the results from [1]_. The prediction for the core-collapse outcome is performed using the C core mass and its C abundance. The criterion by [2]_ is used to determine the final outcome. Parameters ---------- star : obj Star object of a collapsing star containing the MESA profile. Returns ------- m_rem : double Remnant mass of the compact object in M_sun. f_fb : double Fallback mass of the compact object in M_sun. References ---------- .. [1] Patton, R. A., & Sukhbold, T. (2020). MNRAS, 499(2), 2803-2816. .. [2] Ertl, T., Janka, H. T., Woosley, S. E., Sukhbold, T., & Ugliano, M. (2016). ApJ, 818(2), 124. """ Ertl16_k_parameters = { 'N20': [0.194, 0.0580], 'S19.8': [0.274, 0.0470], 'W15': [0.225, 0.0495], 'W20': [0.284, 0.0393], 'W18': [0.283, 0.0430], 'Ertl2020': [0.182, 0.0608], } if engine not in Ertl16_k_parameters.keys(): raise ValueError("Engine " + engine + " is not avaiable for the " "Patton&Sukhbold,20 core-collapse prescription, " "please choose one of the following engines to " "compute the collapse: \n" + "\n".join( list(Ertl16_k_parameters.keys()))) else: CO_core_mass, C_core_abundance = self.get_CO_core_params( star, self.approx_at_he_depletion) M4, mu4 = self.get_M4_mu4_Patton20(CO_core_mass, C_core_abundance) M4 = M4[0] mu4 = mu4[0] star.M4 = M4 star.mu4 = mu4 k1 = Ertl16_k_parameters[engine][0] k2 = Ertl16_k_parameters[engine][1] if CO_core_mass <= 2.5: m_rem = 1.25 f_fb = 0.0 state = 'NS' elif CO_core_mass >= 10.0: # Assuming BH formation by direct collapse if conserve_hydrogen_envelope: m_rem = star.mass else: m_rem = star.he_core_mass f_fb = 1.0 state = 'BH' elif ((k1 * (mu4 * M4) + k2) < mu4): # The prediction is a failed explosion # Assuming BH formation by direct collapse if conserve_hydrogen_envelope: m_rem = star.mass else: m_rem = star.he_core_mass f_fb = 1.0 state = 'BH' else: # The prediction is a succesful explosion m_rem = M4 f_fb = 0.0 state = 'NS' return m_rem, f_fb, state
[docs] class Sukhbold16_corecollapse(object): """Compute supernova final remnant mass, fallback fraction and CO type. This considers the He core mass of the nearest neighbor of the star prior to the collapse. Using a set of data for the He core mass of the compact object progenitors prior the collapse, the final remnant mass and stellar state of the compact object are known. Parameters ---------- engine : string Engine for the supernova explosion, from the one where used in [1]_. path_engine_dataset : string Path to the location of the data on initial and final states for each engine described in [1]_ Returns ------- m_rem : double Remnant mass of the compact object in M_sun. f_fb : double Fallback mass of the compact object in M_sun. state : string Finall state of the stellar remnant after the supernova. References ---------- .. [1] Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M., & Janka, H. T. (2016). Core-collapse supernovae from 9 to 120 solar masses based on neutrino-powered explosions. The Astrophysical Journal, 821(1), 38. """ def __init__(self, engine, path_engine_dataset, verbose): """Initialize a Sukhbold16_corecollapse instance.""" self.engines = ['N20', 'S19.8', 'W15', 'W20', 'W18'] self.engine = engine self.path_engine_dataset = path_engine_dataset if self.engine in self.engines: # path_engine_dataset = path_to_Sukhbold_datasets if verbose: print( "Class initialisation, load the train dataset for engine " + self.engine + " ..." ) # Check if interpolation files exist filename = os.path.join(path_engine_dataset, "results_" + self.engine + "_table.csv") if not os.path.exists(filename): data_download() Engine_data = read_csv(filename) # Selecting only the neutro-stars and black-holes with no fallback Engine_data = Engine_data[ (Engine_data["stellar_state"] == 13) | ( (Engine_data["stellar_state"] == 14) & (Engine_data["fallback_mass"] == 0) ) ] if verbose: print("Training the classifier ...") # Classifier to assign the type of the remnant after supernova # as a function of the He core mass pre-supernova # taking the first nearest neighbor n_neighbors = 1 self.stellar_type_classifier = neighbors.KNeighborsClassifier( n_neighbors, weights="distance" ) self.stellar_type_classifier.fit( np.array(Engine_data["He_c_mass"]).reshape( (len(Engine_data["He_c_mass"]), 1) ), Engine_data["stellar_state"], ) if verbose: print("Done ...\n") print("Training the remnant mass interpolator ...") # Interpolator to compute the remnant mass # as a function of the He core mass pre-supernova # and the stellar type of the remnant. NS_rem_mass = np.array( Engine_data[Engine_data["stellar_state"] == 13]["Rem_mass"] ) NS_He_prog = np.array( Engine_data[Engine_data["stellar_state"] == 13]["He_c_mass"] ) self.mass_NS_interpolator = interp1d(NS_He_prog, NS_rem_mass) BH_rem_mass = np.array( Engine_data[Engine_data["stellar_state"] == 14]["Rem_mass"] ) BH_He_prog = np.array( Engine_data[Engine_data["stellar_state"] == 14]["He_c_mass"] ) self.mass_BH_interpolator = interp1d(BH_He_prog, BH_rem_mass) if verbose: print("Done ...\n") # Gets the neutron-star mass in terms of the He core mass # if a succesful explotion is predicted def extrapolate1d_NS(value, interpolator): x = interpolator.x if (value >= np.min(x)) and (value <= np.max(x)): result = interpolator(value) elif value < np.min(x): result = interpolator(np.min(x)) elif value > np.max(x): result = interpolator(np.max(x)) return result # Gets the black-hole mass in terms of the He core mass # if a unsuccesful explotion is predicted def extrapolate1d_BH(value, interpolator): x = interpolator.x if (value >= np.min(x)) and (value <= np.max(x)): result = interpolator(value) elif value < np.min(x): result = interpolator(np.min(x)) elif value > np.max(x): result = value return result self.extrapolate_NS = extrapolate1d_NS self.extrapolate_BH = extrapolate1d_BH else: raise ValueError( "Engine " + self.engine + " is not avaiable for the" "Sukhbold core collapse prescription, please choose" "one of the following engines to compute the collapse: ", self.engines, ) def __call__(self, star, conserve_hydrogen_envelope=False): """Get the mass, fallback franction and state of the remnant.""" if star.state in STAR_STATES_CC: m_star = star.mass # M_sun # m_core = star.co_core_mass # M_sun m_He_core = star.he_core_mass # M_sun elif star.state_history[-1] in STAR_STATES_CC: m_star = star.mass_history[-1] # M_sun # m_core = star.co_core_mass_history[-1] # M_sun m_He_core = star.he_core_mass_history[-1] # M_sun else: raise ValueError("There is no information in the evolutionary " "history about STAR_STATES_CC.") k_result = int(self.stellar_type_classifier.predict([[m_He_core]])[0]) if k_result == 13: state = "NS" elif k_result == 14: state = "BH" else: state = None if state == "BH": # Assuming BH formation by direct collapse if conserve_hydrogen_envelope: m_rem = self.extrapolate_BH(m_star, self.mass_BH_interpolator) else: m_rem = self.extrapolate_BH(m_He_core, self.mass_BH_interpolator) f_fb = 1. elif state == "NS": m_rem = self.extrapolate_NS(m_He_core, self.mass_NS_interpolator) f_fb = 0. else: raise ValueError("Need a NS or BH to apply `Sukhbold16_corecollapse`.") return float(m_rem), f_fb, state
[docs] class Couch20_corecollapse(object): """Compute SN final remnant mass, fallback fraction and stellar state. This considers the nearest neighboor of the He core mass of the star, previous to the collapse. Considering a set of data for which the He core mass of the compact object progenitors before the collapse, the final remnant mass and final stellar state of the compact object is known. Parameters ---------- engine : string Engine for the supernova explosion, from the one where used in [1]_. path_engine_dataset : string Path to the location of the data on initial and final states for each engine described in [1]_ Returns ------- m_rem : double Remnant mass of the compact object in M_sun. f_fb : double Fallback mass of the compact object in M_sun. state : string Finall state of the stellar remnant after the supernova. Notes ----- We need [2]_ data for their cores. References ---------- .. [1] Couch, S. M., Warren, M. L., & O’Connor, E. P. 2020, ApJ, 890, 127 Simulating Turbulence-aided Neutrino-driven Core-collapse Supernova Explosions in One Dimension .. [2] Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M., & Janka, H. T. (2016). Core-collapse supernovae from 9 to 120 solar masses based on neutrino-powered explosions. The Astrophysical Journal, 821(1), 38. """ def __init__(self, turbulence_strength, path_engine_dataset, verbose): """Initialize a Couch20_corecollapse instance.""" self.turbulence_strength_options = ["1.0", "1.2", "1.23", "1.25", "1.27", "1.3", "1.4"] self.turbulence_strength = turbulence_strength self.path_engine_dataset = path_engine_dataset if turbulence_strength in self.turbulence_strength_options: # path_engine_dataset = path_to_Sukhbold_datasets if verbose: print( "Class initialisation, load the train dataset for engine " + self.engine + " ..." ) # Check if interpolation files exist filename = os.path.join(path_to_Couch_datasets, 'explDatsSTIR2.json') if not os.path.exists(filename): data_download() Couch_data_file = open(filename) # Couch_data = json.loads(Couch_data_file) Couch_data = json.load(Couch_data_file) Couch_data_file.close() Couch_data = Couch_data[turbulence_strength] # breakpoint() # #names = ['MZAMS',['rmax','texp','Eexp']] # my_names = ['MZAMS','Eexp'] # my_formats = ['f8','f8'] # dtype = dict(names = my_names, formats= my_formats) # #dt = np.dtype() # #Couch_data_ar = np.array(list(Couch_data.items()), dtype=dtype) # # #Couch_data_ar = np.array(Couch_data[turbulence_strength]) # #Couch_data_ar = [np.array(Couch_data[MZAMS]) # for MZAMS in Couch_data] # #Couch_data_ar = np.array([(MZAMS,rest["Eexp"]) for (MZAMS,rest) # in Couch_data.items()], dtype=dtype) Couch_MZAMS = [] Couch_Eexp = [] Couch_state = [] for MZAMS, rest in Couch_data.items(): Couch_MZAMS.append(float(MZAMS)) Couch_Eexp.append(rest["Eexp"]) if rest["Eexp"] == 0.0: Couch_state.append(int(14)) # BH else: Couch_state.append(int(13)) # NS # Couch_MZAMS = np.array(Couch_MZAMS, dtype=dict( # names=my_names[0], formats=my_formats[0])) # Couch_Eexp = np.array(Couch_Eexp,dtype=dict( # names=my_names[1], formats= my_formats[1])) # Couch_data_ar = np.array() # breakpoint() # print(Couch_data) # we need Sukhbold data for their cores Sukhbold_data = read_csv( # path_to_Sukhbold_datasets + "results_N20_table.csv" path_to_Couch_datasets + "Sukhbold_Mzams_He_c_core.csv", usecols=[0, 1]) MZAMS = Sukhbold_data["Mzams"] He_core_mass = Sukhbold_data["He_c_mass"] self.MZAMS_He_core_mass_Sukhbold_interpolator = interp1d( MZAMS, He_core_mass) # def MZAMS_He_core_mass_Sukhbold_interpolator(MZams): # return Sukhbold_data[Sukhbold_data["Mzams"]==MZams][ # "He_c_mass"] # # Classifier to assign the He core mass of Sukhbold # # as a function of the MZAMS # # taking the first nearest neighbor # n_neighbors = 1 # self.stellar_ZAMS_classifier = neighbors.KNeighborsClassifier( # n_neighbors, weights="distance" # ) # self.stellar_ZAMS_classifier.fit( # np.array(Sukhbold_data["Mzams"]).reshape( # (len(Sukhbold_data["Mzams"]), 1) # ), # Sukhbold_data["He_c_mass"], # ) # MZAMS = np.array( # Sukhbold_data["Mzams"] # ) # He_c_mass = np.array( # Sukhbold_data["He_c_mass"] # ) # self.MZAMS_He_core_mass_Sukhbold_interpolator = interp1d(MZAMS, # He_c_mass) Couch_He_c_mass = self.MZAMS_He_core_mass_Sukhbold_interpolator( Couch_MZAMS) if verbose: print("Training Couch+20 data...\n") # Classifier to assign the type of the remnant after supernova # as a function of the He core mass pre-supernova of Sukhbold 2016 # taking the first nearest neighbor n_neighbors = 1 self.stellar_type_classifier = neighbors.KNeighborsClassifier( n_neighbors, weights="distance" ) self.stellar_type_classifier.fit( np.array(Couch_He_c_mass).reshape( (len(Couch_He_c_mass), 1) ), np.array(Couch_state), ) ''' breakpoint() print("Training the remnant mass interpolator ...") # Interpolator to compute the remnant mass # as a function of the He core mass pre-supernova # and the stellar type of the remnant. NS_rem_mass = np.array( Engine_data[Engine_data["stellar_state"] == 13]["Rem_mass"] ) NS_He_prog = np.array( Engine_data[Engine_data["stellar_state"] == 13]["He_c_mass"] ) self.mass_NS_interpolator = interp1d(NS_He_prog, NS_rem_mass) BH_rem_mass = np.array( Engine_data[Engine_data["stellar_state"] == 14]["Rem_mass"] ) BH_He_prog = np.array( Engine_data[Engine_data["stellar_state"] == 14]["He_c_mass"] ) self.mass_BH_interpolator = interp1d(BH_He_prog, BH_rem_mass) if verbose: print("Done ...\n") # Gets the neutron-star mass in terms of the He core mass # if a succesful explotion is predicted def extrapolate1d_NS(value, interpolator): x = interpolator.x if (value >= np.min(x)) and (value <= np.max(x)): result = interpolator(value) elif value < np.min(x): result = interpolator(np.min(x)) elif value > np.max(x): result = interpolator(np.max(x)) return result # Gets the black-hole mass in terms of the He core mass # if a unsuccesful explotion is predicted def extrapolate1d_BH(value, interpolator): x = interpolator.x if (value >= np.min(x)) and (value <= np.max(x)): result = interpolator(value) elif value < np.min(x): result = interpolator(np.min(x)) elif value > np.max(x): result = value return result self.extrapolate_NS = extrapolate1d_NS self.extrapolate_BH = extrapolate1d_BH ''' else: raise ValueError( "Turbulence strength " + self.turbulence_strength + " is not " "available for the Couch core collapse prescription, please " "choose one of the following engines to compute the collapse:", self.turbulence_strength_options) def __call__(self, star, conserve_hydrogen_envelope=False): """Get the mass, fallback fraction and state of the remnant.""" if star.state in STAR_STATES_CC: m_star = star.mass # M_sun # m_core = star.co_core_mass # M_sun m_He_core = star.he_core_mass # M_sun elif star.state_history[-1] in STAR_STATES_CC: m_star = star.mass_history[-1] # M_sun # m_core = star.co_core_mass_history[-1] # M_sun m_He_core = star.he_core_mass_history[-1] # M_sun else: raise ValueError("There is no information in the evolutionary " "history about STAR_STATES_CC.") # single_star_equivalent_ZAMS = \ # self.stellar_ZAMS_classifier.predict([[m_He_core]])[0] k_result = int(self.stellar_type_classifier.predict([[m_He_core]])[0]) if k_result == 13: state = "NS" elif k_result == 14: state = "BH" else: state = None if state == "BH": # Assuming BH formation by direct collapse if conserve_hydrogen_envelope: m_rem = m_star else: m_rem = m_He_core # m_rem = self.extrapolate_BH(m_He_core, self.mass_BH_interpolator) # TODO: We need to contact Couch et al. to get the remnant masses # f_fb = m_rem / m_He_core f_fb = 1. elif state == "NS": # TODO We need to contact Couch et al. to get the remnant masses m_rem = 1.4 # f_fb = m_rem / m_He_core f_fb = 0. else: raise ValueError("Need a NS or BH to apply `Sukhbold16_corecollapse`.") return float(m_rem), f_fb, state
[docs] def check_SN_CO_match(SN_type, state): '''Check if the SN type matches the stellar state of the given star. Parameters ---------- SN_type : str SN type of the star. state : str Stellar state of the star. Returns ------- correct_SN_type : bool True if the SN type matches the stellar state of the star. ''' # TODO: remove star.state == PISN, because PISN shouldn't be a stellar state if state == 'PISN': state = 'massless_remnant' correct_SN_type = True if state == 'WD' and SN_type != "WD": correct_SN_type = False elif (state == "NS") and \ (SN_type != 'ECSN' and SN_type != "CCSN"): correct_SN_type = False elif (state =="BH") and \ (SN_type != "CCSN" and SN_type != 'PPISN'): correct_SN_type = False elif (state == "massless_remnant" and SN_type != 'PISN'): correct_SN_type = False return correct_SN_type