Source code for posydon.visualization.plot2D

"""Plotting class for 2D (MESA) psygrids.

The 2D visualization plotting class allows to plot 2D slices of PsyGrid
objects. The PsyGrid object is composed of 2D/3D/4D MESA grid run with POSYDON
and post processed with the psygrid object into an h5 file.
"""


__authors__ = [
    "Simone Bavera <Simone.Bavera@unige.ch>",
    "Emmanouil Zapartas <ezapartas@gmail.com>",
    "Konstantinos Kovlakas <Konstantinos.Kovlakas@unige.ch>",
    "Matthias Kruckow <Matthias.Kruckow@unige.ch>",
]

import numpy as np
import matplotlib.pyplot as plt
from posydon.utils.gridutils import add_field
from posydon.utils.constants import Zsun
from posydon.visualization.plot_defaults import (
    DEFAULT_MARKERS_COLORS_LEGENDS, add_flag_to_MARKERS_COLORS_LEGENDS,
    PLOT_PROPERTIES, DEFAULT_LABELS)
from posydon.visualization.combine_TF import combine_TF12
import copy
from posydon.utils.posydonwarning import Pwarn


[docs] class plot2D(object): """Plotting class for 2D (MESA) grids.""" def __init__( self, psygrid, x_var_str, y_var_str, z_var_str=None, selected_star_history_for_z_var=1, termination_flag="termination_flag_1", grid_3D=False, slice_3D_var_str=None, slice_3D_var_range=None, grid_4D=False, slice_4D_var_str=None, slice_4D_var_range=None, extra_grid=None, slice_at_RLO=False, MARKERS_COLORS_LEGENDS=None, max_cols=3, legend_pos=(3, 3), verbose=False, **kwargs ): """Read a PsyGrid object and plot a 2D slice of x vs y. Parameters ---------- psygrid : object PsyGrid object containing a 2D/3D/4D MESA grid. x_var_str : str String of the initial value to plot on the x axis. Allowed strings are `psygrid.initial_values.dtype.names`. y_var_str : str String of the initial value to plot on the y axis. Allowed strings are `psygrid.initial_values.dtype.names`. z_var_str : str String of the initial value to plot on the z axis (displayed as a color). Allowed strings are `psygrid.final_values.dtype.names`, `psygrid.history1.dtype.names` or `psygrid.history2.dtype.names` depending on "selected_star_history_for_z_var" value, and `psygrid.binary_history.dtype.names`. selected_star_history_for_z_var: int Accepted valuess: 1 or 2. In case z_var_str is an attribute of history1 or history2, then selected_star_history_for_z_var determines which of the two to select. termination_flag : str Termination flag to display, allowed values are: "termination_flag_1", "termination_flag_2", "termination_flag_3", "termination_flag_4", "all". grid_3D : bool If `True`, the psygrid object is a 3D grid and needs to be sliced. slice_3D_var_str : str Variable along which the 3D space will be sliced. Allowed values are `psygrid.initial_values.dtype.names`. slice_3D_var_range : tuple or a list of tuples Range between which you want to slice the variable slice_3D_var_str e.g., `(2.5,3.)`. In case of a list of tuples, one will get a large plot with one subplot for each tuple in the list. grid_4D : bool If `True`, the psygrid object is a 4D grid and needs to be sliced. slice_4D_var_str : str Variable along which the 4D space will be sliced. Allowed values are `psygrid.initial_values.dtype.names`. slice_4D_var_range : tuple or a list of tuples Range between which you want to slice the variable slice_4D_var_str e.g., `(2.5,3.)`. In case of a list of tuples, one will get a large plot with one subplot for each tuple in the list. extra_grid : object or array of objects If subset of the grid was rerun a or an extention was added, one can overlay the new psygrid by passing it here. slice_at_RLO : bool If `True`, the object plots the tracks until onset of Roche Lobe overflow. MARKERS_COLORS_LEGENDS : dict Each termination flag is associated with a marker shape, size, color and label (cf. `MARKERS_COLORS_LEGENDS` in `plot_defaults.py`). DEFAULT_LABELS : dict Each varaible is associated to an axis label. (cf. `DEFAULT_LABELS` in `plot_defaults.py`). max_cols : int Defines the maximum number of columns of subplots. Default: 3 legend_pos : SubplotSpec (int or tuple) Defines which subplots won't contain an axis but are used to display the legend there. Default: (3, 3) verbose : bool If `True`, the object reports by printing to standard output. **kwargs : dict Dictionary containing extra visualisation options (cf. `PLOT_PROPERTIES` in `plot_defaults.py`. """ self.psygrid = psygrid # info 4D/3D parameter space self.grid_3D = grid_3D self.slice_3D_var_str = slice_3D_var_str if slice_3D_var_str in DEFAULT_LABELS: self.slice_3D_text = DEFAULT_LABELS[slice_3D_var_str][0] + '$={}$' elif slice_3D_var_str is None: self.slice_3D_text = '$={}$' else: self.slice_3D_text = slice_3D_var_str + '$={}$' if isinstance(slice_3D_var_range, list): self.slice_3D_n = len(slice_3D_var_range) if self.slice_3D_n==0: raise ValueError("slice_3D_var_range can't be an empty list") self.slice_3D_var_ranges = slice_3D_var_range self.slice_3D_var_range = slice_3D_var_range[0] else: self.slice_3D_n = 1 self.slice_3D_var_range = slice_3D_var_range self.grid_4D = grid_4D self.slice_4D_var_str = slice_4D_var_str if slice_4D_var_str in DEFAULT_LABELS: self.slice_4D_text = DEFAULT_LABELS[slice_4D_var_str][0] + '$={}$' elif slice_4D_var_str is None: self.slice_4D_text = '$={}$' else: self.slice_4D_text = slice_4D_var_str + '$={}$' if isinstance(slice_4D_var_range, list): self.slice_4D_n = len(slice_4D_var_range) if self.slice_4D_n==0: raise ValueError("slice_4D_var_range can't be an empty list") self.slice_4D_var_ranges = slice_4D_var_range self.slice_4D_var_range = slice_4D_var_range[0] else: self.slice_4D_n = 1 self.slice_4D_var_range = slice_4D_var_range self.n_subplots = self.slice_3D_n*self.slice_4D_n self.slice_at_RLO = slice_at_RLO if max_cols>0: self.max_cols = max_cols else: raise ValueError("max_cols should be a positive integer.") if isinstance(legend_pos, int) or isinstance(legend_pos, tuple): self.legend_pos = legend_pos else: raise ValueError("legend_pos should be a positive integer or a" "tuple of positive integers.") self.verbose = verbose # store the extra psygrid if extra_grid is None: self.extra_grid = extra_grid if isinstance(extra_grid, list): raise ValueError( "We support only one extra psygrid at the moment!") else: self.extra_grid = extra_grid # read kwargs for key in kwargs: if key not in PLOT_PROPERTIES: raise ValueError(key + " is not a valid parameter name!") for varname in PLOT_PROPERTIES: default_value = PLOT_PROPERTIES[varname] if ( varname not in ["colorbar", "legend1D", "legend2D"] or varname not in kwargs.keys() ): setattr(self, varname, kwargs.get(varname, default_value)) else: temp_var = {} for sub_varname in PLOT_PROPERTIES[varname]: default_value = PLOT_PROPERTIES[varname][sub_varname] temp_var[sub_varname] = kwargs[varname].get( sub_varname, default_value ) setattr(self, varname, temp_var) # for the default 2D legend infer it from the termination_flag if (hasattr(self, "legend2D") and (("title" not in self.legend2D.keys()) or (self.legend2D["title"]==PLOT_PROPERTIES["legend2D"]["title"]))): if (termination_flag in DEFAULT_LABELS.keys()): self.legend2D["title"] = DEFAULT_LABELS[termination_flag][0] elif (('SN_type' in termination_flag) and ('SN_type' in DEFAULT_LABELS.keys())): self.legend2D["title"] = DEFAULT_LABELS['SN_type'][0] elif (('CO_type' in termination_flag) and ('CO_type' in DEFAULT_LABELS.keys())): self.legend2D["title"] = DEFAULT_LABELS['CO_type'][0] elif (('state' in termination_flag) and ('state' in DEFAULT_LABELS.keys())): self.legend2D["title"] = DEFAULT_LABELS['state'][0] # plotting fonts plt.rcParams.update(self.rcParams) # store the initial/final values self.initial_values = self.psygrid.initial_values if self.initial_values is None: raise ValueError("No initial values in PSyGrid") # add extra properties to initial_values self.add_properties_to_initial_values() self.initial_values_str = self.initial_values.dtype.names self.final_values = self.psygrid.final_values if self.final_values is None: raise ValueError("No final values in PSyGrid") # add extra properties to final_values if termination_flag in ["combined_TF12", "debug", "interpolation_class_errors"]: self.add_properties_to_final_values(termination_flag) if termination_flag == 'termination_flag_2': # remmove ? from strings TF2 = self.final_values['termination_flag_2'] TF2_clean = [TF.replace('?', '') for TF in TF2] self.final_values['termination_flag_2'] = TF2_clean self.final_values_str = self.final_values.dtype.names H1_names = () H2_names = () BH_names = () for i in range(len(psygrid)): if len(H1_names)==0 and self.psygrid[i].history1 is not None: H1_names = self.psygrid[i].history1.dtype.names if len(H2_names)==0 and self.psygrid[i].history2 is not None: H2_names = self.psygrid[i].history2.dtype.names if len(BH_names)==0 and self.psygrid[i].binary_history is not None: BH_names = self.psygrid[i].binary_history.dtype.names if len(H1_names)>0 and len(H2_names)>0 and len(BH_names)>0: break # x, y and z variables must exist if x_var_str not in self.initial_values_str and not self.slice_at_RLO: raise ValueError( "x_var_str = {} is not available in psygrid.initial_values". format(x_var_str)) elif (x_var_str not in BH_names and self.slice_at_RLO): raise ValueError("x_var_str = {} is not available in " "psygrid.binary_history".format(x_var_str)) else: self.x_var_str = x_var_str if y_var_str not in self.initial_values_str and not self.slice_at_RLO: raise ValueError("y_var_str = {} is not available in " "psygrid.initial_values".format(y_var_str)) elif (y_var_str not in BH_names and self.slice_at_RLO): raise ValueError("y_var_str = {} is not available in " "psygrid.binary_history".format(y_var_str)) else: self.y_var_str = y_var_str if selected_star_history_for_z_var in [1, 2]: self.selected_star_history_for_z_var = ( selected_star_history_for_z_var) else: raise ValueError( "selected_star_history_for_z_var should be either 1 or 2" ) if z_var_str is not None: if not self.slice_at_RLO: if isinstance(z_var_str, np.ndarray): self.z_var_str = None self.z_var = z_var_str self.history = False self.binary_history = False elif z_var_str in self.final_values_str: self.z_var_str = z_var_str self.history = False self.binary_history = False elif 'relative_change' in z_var_str: self.z_var_str = z_var_str self.history = False self.binary_history = False self.add_properties_to_final_values(None) elif (self.selected_star_history_for_z_var == 1 and z_var_str in H1_names): self.z_var_str = z_var_str self.history = True self.binary_history = False elif (self.selected_star_history_for_z_var == 2 and z_var_str in H2_names): self.z_var_str = z_var_str self.history = True self.binary_history = False elif z_var_str in BH_names: self.z_var_str = z_var_str self.history = False self.binary_history = True else: raise ValueError( "z_var_str = {} is not available in " "psygrid.final_values or psygrid.history1/2 or " "psygrid.binary_history".format(z_var_str) ) else: if (self.selected_star_history_for_z_var == 1 and z_var_str in H1_names): self.z_var_str = z_var_str self.history = True self.binary_history = False elif (self.selected_star_history_for_z_var == 2 and z_var_str in H2_names): self.z_var_str = z_var_str self.history = True self.binary_history = False elif z_var_str in BH_names: self.z_var_str = z_var_str self.history = False self.binary_history = True else: raise ValueError( "z_var_str = {} is not available in psygrid.history1/2" " or psygrid.binary_history".format(z_var_str) ) else: self.z_var_str = None self.history = None self.binary_history = None # get values to plot if termination_flag in [ "termination_flag_1", "termination_flag_2", "termination_flag_3", "termination_flag_4", "combined_TF12", "debug", "interpolation_class", "interpolation_class_errors", ] or ('SN_type' in termination_flag or 'CO_type' in termination_flag or 'state' in termination_flag): self.all_termination_flags = False if 'SN_type' in termination_flag: self.update_markers_colors_legends('SN_type', MARKERS_COLORS_LEGENDS) elif 'state' in termination_flag or 'CO_type' in termination_flag: self.update_markers_colors_legends('state', MARKERS_COLORS_LEGENDS) else: self.update_markers_colors_legends(termination_flag, MARKERS_COLORS_LEGENDS) self.update_values_to_plot(termination_flag) self.extra_grid_termination_flag = termination_flag elif termination_flag == "all": self.all_termination_flags = True else: raise ValueError('termination_flag can only be 1,2,3,4 or "all"!') def __call__(self): """Generate the plot when the class is called.""" # check whether to plot several slices if self.n_subplots>1: # determine size of legend by assuming max_cols will be the number # of columns and add it to the number of subplots if isinstance(self.legend_pos,int): l_idxs = [self.legend_pos] else: l_cols = (np.array(self.legend_pos) - 1) % self.max_cols + 1 l_rows = (np.array(self.legend_pos) - 1) // self.max_cols + 1 # generate list with all subplot indices covered by the legend l_idxs = [] for j in range(min(l_rows)-1,max(l_rows)): for i in range(min(l_cols),max(l_cols)+1): l_idxs += [i+j*self.max_cols] self.n_subplots += len(l_idxs) # calculate the number of columns and rows self.n_cols = min(self.n_subplots, self.max_cols) self.n_rows = (self.n_subplots - 1) // self.n_cols + 1 # create figure and axes fig, axs = plt.subplots(nrows=self.n_rows, ncols=self.n_cols, sharex=True, sharey=True, figsize=self.figsize) l_ax = fig.add_subplot(self.n_rows, self.n_cols, self.legend_pos) self.plot_panels(axs, l_ax, legend_idxs=l_idxs) # adjust spacing plt.subplots_adjust(wspace=self.wspace, hspace=self.hspace) elif self.all_termination_flags: fig = plt.figure(figsize=self.figsize) ax1 = plt.subplot(2, 2, 1) self.update_markers_colors_legends("termination_flag_1") self.update_values_to_plot("termination_flag_1") self.plot_panel(ax1) ax2 = plt.subplot(2, 2, 2) self.update_markers_colors_legends("termination_flag_2") self.update_values_to_plot("termination_flag_2") self.plot_panel(ax2) ax3 = plt.subplot(2, 2, 3) self.update_markers_colors_legends("termination_flag_3") self.update_values_to_plot("termination_flag_3") self.plot_panel(ax3) ax4 = plt.subplot(2, 2, 4) self.update_markers_colors_legends("termination_flag_4") self.update_values_to_plot("termination_flag_4") self.plot_panel(ax4) # adjust spacing plt.subplots_adjust(wspace=self.wspace, hspace=self.hspace) # save figure if self.PdfPages is not None: self.PdfPages.savefig(figure=fig, dpi=self.dpi, bbox_inches=self.bbox_inches) elif self.fname is not None: fig.savefig(self.path_to_file + self.fname, dpi=self.dpi, bbox_inches=self.bbox_inches) # show figure if self.show_fig: plt.show() # close figure if self.close_fig: plt.close(fig) else: return fig else: fig = plt.figure(figsize=self.figsize) ax = plt.subplot(111) self.plot_panel(ax) # add extra layer of grid on top of the plot if self.extra_grid is not None: # switch values to extra psygrid and update values to plot self.initial_values = self.extra_grid.initial_values self.final_values = self.extra_grid.final_values self.add_properties_to_initial_values() self.update_values_to_plot(self.extra_grid_termination_flag) self.plot_panel(ax, extra_grid_call=True) # add title self.set_title(fig) # save figure if self.PdfPages is not None: self.PdfPages.savefig(figure=fig, dpi=self.dpi, bbox_inches=self.bbox_inches) elif self.fname is not None: fig.savefig(self.path_to_file + self.fname, dpi=self.dpi, bbox_inches=self.bbox_inches) # show figure if self.show_fig: plt.show() # close figure if self.close_fig: plt.close(fig) else: return fig
[docs] def plot_panel(self, ax, extra_grid_call=False): """Plot the 2D pannel. Parameters ---------- ax : object matplotlib figure axes. extra_grid_call : bool If `True`, one ore more extra grids are passed. """ scatters = [] scatters_legend = [] # plot figure by looping over termination_flag sc_last = None for flag in self.termination_flag_str: selection = self.termination_flag == flag if flag not in self.MARKERS_COLORS_LEGENDS.keys(): add_flag_to_MARKERS_COLORS_LEGENDS(self.MARKERS_COLORS_LEGENDS, flag) if self.MARKERS_COLORS_LEGENDS[flag][2] is not None: if self.slice_at_RLO: for i in range(len(self.x_var[selection])): if not isinstance(self.x_var_oRLO[selection][i], float): if (not any(np.isnan( self.x_var_oRLO[selection][i])) and not any(np.isnan( self.y_var_oRLO[selection][i]))): plt.plot( self.x_var[selection][i], self.y_var[selection][i], marker=".", color="black", ) plt.plot( self.x_var_oRLO[selection][i], self.y_var_oRLO[selection][i], color="black", ) sc = ax.scatter( self.x_var_oRLO[selection][i][-1], self.y_var_oRLO[selection][i][-1], marker=self.MARKERS_COLORS_LEGENDS[flag][0], linewidths=self.MARKERS_COLORS_LEGENDS[flag][ 1], c=self.MARKERS_COLORS_LEGENDS[flag][2], s=self.marker_size, ) else: plt.plot( self.x_var[selection][i], self.y_var[selection][i], marker=".", color="black", ) sc = ax.scatter( self.x_var[selection][i], self.y_var[selection][i], marker=self.MARKERS_COLORS_LEGENDS[flag][0], linewidths=self.MARKERS_COLORS_LEGENDS[ flag][1], c=self.MARKERS_COLORS_LEGENDS[flag][2], s=self.marker_size, ) else: sc = ax.scatter( self.x_var[selection], self.y_var[selection], marker=self.MARKERS_COLORS_LEGENDS[flag][0], linewidths=self.MARKERS_COLORS_LEGENDS[flag][1], c=self.MARKERS_COLORS_LEGENDS[flag][2], s=self.marker_size, ) else: if self.z_var is not None: if self.slice_at_RLO: for i in range(len(self.x_var[selection])): if not isinstance(self.x_var_oRLO[selection][i], float): if not any( np.isnan(self.x_var_oRLO[selection][i]) ) and not any(np.isnan( self.y_var_oRLO[selection][i])): plt.plot( self.x_var[selection][i], self.y_var[selection][i], marker=".", color="black", ) plt.plot( self.x_var_oRLO[selection][i], self.y_var_oRLO[selection][i], color="black", ) sc = ax.scatter( self.x_var_oRLO[selection][i][-1], self.y_var_oRLO[selection][i][-1], marker=self.MARKERS_COLORS_LEGENDS[ flag][0], linewidths=self.MARKERS_COLORS_LEGENDS[ flag][1], c=self.z_var[selection][i], s=self.marker_size, alpha=0.5, vmin=self.zmin, vmax=self.zmax, ) else: plt.plot( self.x_var[selection][i], self.y_var[selection][i], marker=".", color="black", ) sc = ax.scatter( self.x_var[selection][i], self.y_var[selection][i], marker=self.MARKERS_COLORS_LEGENDS[ flag][0], linewidths=self.MARKERS_COLORS_LEGENDS[ flag][1], c=self.z_var[selection][i], s=self.marker_size, alpha=0.5, vmin=self.zmin, vmax=self.zmax, ) else: try: sc = ax.scatter( self.x_var[selection], self.y_var[selection], marker=self.MARKERS_COLORS_LEGENDS[flag][0], linewidths=self.MARKERS_COLORS_LEGENDS[flag][1], c=self.z_var[selection], s=self.marker_size, vmin=self.zmin, vmax=self.zmax, ) except: Pwarn(f'Failed to plot values for flag {flag}, ' 'likely all values are NaN.', "InappropriateValueWarning") sc_last = sc # collect scatters for legend if self.MARKERS_COLORS_LEGENDS[flag][3] not in scatters_legend: scatters.append(sc) scatters_legend.append(self.MARKERS_COLORS_LEGENDS[flag][3]) if sc_last is not None and not extra_grid_call: self.set_color_bar(sc_last) # add labels and legend self.set_xlabel() self.set_ylabel() self.set_xlim() self.set_ylim() self.set_legend(ax, scatters, scatters_legend)
[docs] def add_properties_to_initial_values(self): """Add extra initial values.""" old_initial_values = copy.copy(self.initial_values) # add the column mass_ratio mass_ratio = (old_initial_values["star_2_mass"] / old_initial_values["star_1_mass"]) new_initial_values = add_field(old_initial_values, [("mass_ratio", "<f8")]) new_initial_values["mass_ratio"] = mass_ratio # add the column Z_Zsun Z_Zsun = old_initial_values["Z"]/Zsun new_initial_values = add_field(new_initial_values, [("Z_Zsun", "<f8")]) new_initial_values["Z_Zsun"] = Z_Zsun self.initial_values = new_initial_values
[docs] def add_properties_to_final_values(self, termination_flag=None): """Add extra initial values.""" old_initial_values = copy.copy(self.initial_values) old_final_values = copy.copy(self.final_values) if termination_flag == "combined_TF12": combined_TF12 = combine_TF12( old_final_values['interpolation_class'], old_final_values['termination_flag_2'], self.verbose) new_final_values = add_field(old_final_values, [("combined_TF12", "<U70")]) new_final_values["combined_TF12"] = combined_TF12 elif termination_flag == "debug": new_final_values = add_field(old_final_values, [("debug", "<U70")]) new_final_values["debug"] = old_final_values['termination_flag_1'] elif termination_flag == "interpolation_class_errors": new_final_values = add_field(old_final_values, [("interpolation_class_errors", "<U70")]) new_final_values["interpolation_class_errors"] = old_final_values['interpolation_class'] elif 'relative_change' in self.z_var_str: key = self.z_var_str.split('relative_change_')[1] relative_change_key = ( (old_final_values[key] - old_initial_values[key]) / old_initial_values[key]) new_final_values = add_field(old_final_values, [(self.z_var_str, "<f8")]) new_final_values[self.z_var_str] = relative_change_key self.final_values = new_final_values
[docs] def update_markers_colors_legends( self, termination_flag, MARKERS_COLORS_LEGENDS=None ): """Udpdate markers, colors and legend. Parameters ---------- termination_flag : string Termination flag to display, allowed values are: "termination_flag_1", "termination_flag_2", "termination_flag_3", "termination_flag_4". MARKERS_COLORS_LEGENDS : dict Each termination flag is associated with a marker shape, size, color and label. """ if MARKERS_COLORS_LEGENDS is None: self.MARKERS_COLORS_LEGENDS = DEFAULT_MARKERS_COLORS_LEGENDS[ termination_flag] else: self.MARKERS_COLORS_LEGENDS = MARKERS_COLORS_LEGENDS[ termination_flag]
[docs] def update_values_to_plot(self, termination_flag): """Update all values to plot. Parameters ---------- termination_flag : string Termination flag to display, allowed values are: "termination_flag_1", "termination_flag_2", "termination_flag_3", "termination_flag_4". """ # get termination flags self.termination_flag = self.final_values[termination_flag] # save values to plot self.get_x_var() self.get_y_var() if self.z_var_str is not None: self.get_z_var() elif not hasattr(self, 'z_var'): self.z_var = None # if 4D space: slice it to 2D if self.grid_4D and self.grid_3D: slice = np.logical_and( np.logical_and( self.initial_values[self.slice_4D_var_str] >= self.slice_4D_var_range[0], self.initial_values[self.slice_4D_var_str] <= self.slice_4D_var_range[1], ), np.logical_and( self.initial_values[self.slice_3D_var_str] >= self.slice_3D_var_range[0], self.initial_values[self.slice_3D_var_str] <= self.slice_3D_var_range[1], ), ) self.x_var = self.x_var[slice] self.y_var = self.y_var[slice] if self.z_var is not None: self.z_var = self.z_var[slice] if self.slice_at_RLO: self.x_var_oRLO = self.x_var_oRLO[slice] self.y_var_oRLO = self.y_var_oRLO[slice] self.termination_flag = self.termination_flag[slice] if self.verbose: print("The 4D space was sliced along {} = {} and {} = {}.". format(self.slice_4D_var_str, self.slice_4D_var_range, self.slice_3D_var_str, self.slice_3D_var_range)) print("") print("Total values to plot {}". format(len(self.termination_flag))) # if 3D space: slice it to 2D if (not self.grid_4D) and self.grid_3D: slice = np.logical_and( self.initial_values[self.slice_3D_var_str] >= self.slice_3D_var_range[0], self.initial_values[self.slice_3D_var_str] <= self.slice_3D_var_range[1], ) self.x_var = self.x_var[slice] self.y_var = self.y_var[slice] if self.z_var is not None: self.z_var = self.z_var[slice] if self.slice_at_RLO: self.x_var_oRLO = self.x_var_oRLO[slice] self.y_var_oRLO = self.y_var_oRLO[slice] self.termination_flag = self.termination_flag[slice] if self.verbose: print( "The 3D space was sliced along {} = {}.".format( self.slice_3D_var_str, self.slice_3D_var_range ) ) print("") print("Total values to plot {}.". format(len(self.termination_flag))) # find all different termination flags self.termination_flag_str = np.unique(self.termination_flag) # fix max min color bar if self.z_var is not None: if self.zmin is None: not_nan = np.invert(np.isnan(self.z_var)) self.zmin = min(self.z_var[not_nan]) if self.zmax is None: not_nan = np.invert(np.isnan(self.z_var)) self.zmax = max(self.z_var[not_nan])
[docs] def get_x_var(self): """Get x value to plot.""" if self.log10_x: self.x_var = np.log10(self.initial_values[self.x_var_str]) else: self.x_var = self.initial_values[self.x_var_str] if self.slice_at_RLO: values = [] for run in self.psygrid: # failed runs are stored as signle values or None, not arrays if run.binary_history is None: values.append(np.nan) elif isinstance(run.binary_history[self.x_var_str], np.ndarray): # index of onset of RLO indicies_RLO = np.where( (run.binary_history["rl_relative_overflow_1"] >= -0.05) & (run.binary_history["lg_mtransfer_rate"] >= -12) )[0] if len(indicies_RLO) > 0: index_oRLO = indicies_RLO[0] if self.log10_x: values.append(np.log10(run.binary_history[ self.x_var_str][: index_oRLO + 1])) else: values.append(run.binary_history[ self.x_var_str][: index_oRLO + 1]) else: # the array is empty, no RLO values.append(np.nan) else: values.append(np.nan) self.x_var_oRLO = np.array(values, dtype=object)
[docs] def get_y_var(self): """Get y value to plot.""" if self.log10_y: self.y_var = np.log10(self.initial_values[self.y_var_str]) else: self.y_var = self.initial_values[self.y_var_str] if self.slice_at_RLO: values = [] for run in self.psygrid: # failed runs are stored as signle values or None, not arrays if run.binary_history is None: values.append(np.nan) elif isinstance(run.binary_history[self.y_var_str], np.ndarray): # index of onset of RLO indicies_RLO = np.where( (run.binary_history["rl_relative_overflow_1"] >= -0.05) & (run.binary_history["lg_mtransfer_rate"] >= -12) )[0] if len(indicies_RLO) > 0: index_oRLO = indicies_RLO[0] if self.log10_y: values.append(np.log10(run.binary_history[ self.y_var_str][: index_oRLO + 1])) else: values.append(run.binary_history[ self.y_var_str][: index_oRLO + 1]) else: # the array is empty, no RLO values.append(np.nan) else: values.append(np.nan) self.y_var_oRLO = np.array(values, dtype=object)
[docs] def get_z_var(self): """Get z value to plot.""" if self.history is None: raise ValueError("Something went wrong!") # read the final values from history1 if not self.slice_at_RLO: if self.history: final_values = [] for run in self.psygrid: if self.selected_star_history_for_z_var == 1: history = run.history1 elif self.selected_star_history_for_z_var == 2: history = run.history2 else: raise ValueError( "wrong selected_star_history_for_z_var") # failed runs are stored as signle values or None # and not arrays if history is None: final_values.append(np.nan) elif isinstance(history[self.z_var_str], np.ndarray): final_values.append(history[self.z_var_str][-1]) else: final_values.append(np.nan) final_values = np.array(final_values) if self.log10_z: self.z_var = np.log10(final_values) else: self.z_var = final_values elif self.binary_history: final_values = [] for run in self.psygrid: # failed runs are stored as signle values or None # and not arrays if run.binary_history is None: final_values.append(np.nan) elif isinstance(run.binary_history[self.z_var_str], np.ndarray): final_values.append( run.binary_history[self.z_var_str][-1]) else: final_values.append(np.nan) final_values = np.array(final_values) if self.log10_z: self.z_var = np.log10(final_values) else: self.z_var = final_values # read final values from final_values else: if self.log10_z: self.z_var = np.log10(self.final_values[self.z_var_str]) else: self.z_var = self.final_values[self.z_var_str] # take the z_var at oRLO else: if self.history is None and self.binary_history is None: raise ValueError("Something went wrong!") if self.history: values = [] for run in self.psygrid: if self.selected_star_history_for_z_var == 1: history = run.history1 elif self.selected_star_history_for_z_var == 2: history = run.history2 else: raise ValueError( "wrong selected_star_history_for_z_var") # failed runs are stored as signle values or None # and not arrays if history is None: values.append(np.nan) elif isinstance(history[self.z_var_str], np.ndarray): # index of onset of RLO indicies_RLO = np.where( (run.binary_history["rl_relative_overflow_1"] >= -0.05) & (run.binary_history["lg_mtransfer_rate"] >= -12) )[0] if len(indicies_RLO) > 0: index_oRLO = indicies_RLO[0] values.append(history[self.z_var_str][index_oRLO]) else: # the array is empty, no RLO values.append(np.nan) else: values.append(np.nan) values = np.array(values) if self.log10_z: self.z_var = np.log10(values) else: self.z_var = values elif self.binary_history: values = [] for run in self.psygrid: # failed runs are stored as signle values or None # and not arrays if run.binary_history is None: values.append(np.nan) elif isinstance(run.binary_history[self.z_var_str], np.ndarray): # index of onset of RLO indicies_RLO = np.where( (run.binary_history["rl_relative_overflow_1"] >= -0.05) & (run.binary_history["lg_mtransfer_rate"] >= -12) )[0] if len(indicies_RLO) > 0: index_oRLO = indicies_RLO[0] values.append( run.binary_history[self.z_var_str][index_oRLO] ) else: # the array is empty, no RLO values.append(np.nan) else: values.append(np.nan) values = np.array(values) if self.log10_z: self.z_var = np.log10(values) else: self.z_var = values
[docs] def set_title(self, fig): """Add title. Parameters ---------- fig : object matplotlib figure object. """ if self.title is not None and not self.all_termination_flags: plt.title(self.title, fontdict=self.title_font_dict, loc=self.title_loc) elif self.title is not None and self.all_termination_flags: fig.suptitle(self.title, fontdict=self.title_font_dict)
[docs] def set_xlabel(self, ax=None): """Add x label. Parameters ---------- ax : object matplotlib figure axes. """ if self.xlabel is not None: if ax is None: plt.xlabel(self.xlabel, **self.xlabel_kwargs) else: ax.set_xlabel(self.xlabel, **self.xlabel_kwargs) elif self.log10_x: if ax is None: plt.xlabel(DEFAULT_LABELS[self.x_var_str][1], **self.xlabel_kwargs) else: ax.set_xlabel(DEFAULT_LABELS[self.x_var_str][1], **self.xlabel_kwargs) else: if ax is None: plt.xlabel(DEFAULT_LABELS[self.x_var_str][0], **self.xlabel_kwargs) else: ax.set_xlabel(DEFAULT_LABELS[self.x_var_str][0], **self.xlabel_kwargs)
[docs] def set_ylabel(self, ax=None): """Add y label. Parameters ---------- ax : object matplotlib figure axes. """ if self.ylabel is not None: if ax is None: plt.ylabel(self.ylabel, **self.ylabel_kwargs) else: ax.set_ylabel(self.ylabel, **self.ylabel_kwargs) elif self.log10_y: if ax is None: plt.ylabel(DEFAULT_LABELS[self.y_var_str][1], **self.ylabel_kwargs) else: ax.set_ylabel(DEFAULT_LABELS[self.y_var_str][1], **self.ylabel_kwargs) else: if ax is None: plt.ylabel(DEFAULT_LABELS[self.y_var_str][0], **self.ylabel_kwargs) else: ax.set_ylabel(DEFAULT_LABELS[self.y_var_str][0], **self.ylabel_kwargs)
[docs] def set_xlim(self, ax=None): """Set x axes limits. Parameters ---------- ax : object matplotlib figure axes. """ if self.xmin is not None and self.xmax is not None: if ax is None: plt.xlim(self.xmin, self.xmax) else: ax.set_xlim(self.xmin, self.xmax)
[docs] def set_ylim(self, ax=None): """Set y axes limits. Parameters ---------- ax : object matplotlib figure axes. """ if self.ymin is not None and self.ymax is not None: if ax is None: plt.ylim(self.ymin, self.ymax) else: ax.set_ylim(self.ymin, self.ymax)
[docs] def set_legend(self, ax, scatters, scatters_legend): """Add legend. Parameters ---------- ax : object matplotlib figure axes. scatters : object matplotlib scatter object. scatters_legend : list of str List of strings which will be used as labels. """ if self.legend2D["title"] is not None: # defailt: shrink current axis by 20% and put tje legend to # the right of the current axis box = ax.get_position() ax.set_position( [box.x0, box.y0, box.width * self.legend2D["shrink_box"], box.height]) ax.legend( scatters, scatters_legend, borderaxespad=self.legend2D["borderaxespad"], handletextpad=self.legend2D["handletextpad"], columnspacing=self.legend2D["columnspacing"], title=self.legend2D["title"], title_fontsize=self.legend2D["title_font_size"], prop=self.legend2D["prop"], loc=self.legend2D["loc"], ncol=self.legend2D["ncol"], bbox_to_anchor=self.legend2D["bbox_to_anchor"], )
[docs] def set_color_bar(self, scatter, ax=None): """Add colorbar. Parameters ---------- scatters : object matplotlib scatter object. ax : object matplotlib figure axes. """ if self.colorbar["label"] is not None: z_var_str = self.colorbar["label"] z_var_str = z_var_str.replace('INTERP_ERROR_', '') z_var_str = z_var_str.replace('CLASS_ERROR_', '') z_var_str = z_var_str.replace('VIOLIN_', '') if z_var_str in DEFAULT_LABELS.keys(): if self.log10_z: label = DEFAULT_LABELS[z_var_str][1] else: label = DEFAULT_LABELS[z_var_str][0] else: label = self.colorbar["label"] elif isinstance(self.z_var_str, str): z_var_str = self.z_var_str.replace('S1_', '').replace('S2_', '') if z_var_str in DEFAULT_LABELS.keys(): if self.log10_z: label = DEFAULT_LABELS[z_var_str][1] else: label = DEFAULT_LABELS[z_var_str][0] else: label = None else: label = None if ax is not None: cax = ax.inset_axes(self.colorbar["bounds"]) else: cax = None plt.colorbar( mappable=scatter, ax=ax, cax=cax, orientation=self.colorbar["orientation"], fraction=self.colorbar["fraction"], pad=self.colorbar["pad"], shrink=self.colorbar["shrink"], aspect=self.colorbar["aspect"], anchor=self.colorbar["anchor"], panchor=self.colorbar["panchor"], extend=self.colorbar["extend"], ).set_label(label=label, size=self.colorbar["label_size"])
[docs] def plot_panels(self, axs, l_ax=None, legend_idxs=[2]): """Plot the 2D panels. Parameters ---------- axs : array of axes matplotlib figure axes. Its dimensions should be stored in self.n_cols and self.n_rows. legend_idxs : list of indices Tells where to place the legend instead of a plot. """ if len(legend_idxs)==0: legend_idxs = [2] if l_ax is None: row = (legend_idxs[0] - 1) // self.n_cols col = (legend_idxs[0] - 1) % self.n_cols l_ax = axs[row, col] artists = [] artists_legend = [] # plot figure by looping over termination_flag artist_last = None i3D = -1 i4D = 0 for row in range(self.n_rows): for col in range(self.n_cols): idx = row*self.n_cols + col + 1 if idx in legend_idxs: axs[row, col].axis('off') continue i3D += 1 if i3D == self.slice_3D_n: i3D = 0 i4D += 1 if i4D == self.slice_4D_n: axs[row, col].axis('off') continue if self.slice_3D_n>1: self.slice_3D_var_range = self.slice_3D_var_ranges[i3D] if self.slice_4D_n>1: self.slice_4D_var_range = self.slice_4D_var_ranges[i4D] self.update_values_to_plot(self.extra_grid_termination_flag) ax = axs[row, col] for flag in self.termination_flag_str: selection = self.termination_flag == flag if flag not in self.MARKERS_COLORS_LEGENDS.keys(): add_flag_to_MARKERS_COLORS_LEGENDS( self.MARKERS_COLORS_LEGENDS, flag) if self.MARKERS_COLORS_LEGENDS[flag][2] is not None: if self.slice_at_RLO: for i in range(len(self.x_var[selection])): if not isinstance(self.x_var_oRLO[selection] [i], float): if (not any(np.isnan( self.x_var_oRLO[selection][i])) and not any(np.isnan( self.y_var_oRLO[selection][i]))): ax.plot( self.x_var[selection][i], self.y_var[selection][i], marker=".", color="black", ) ax.plot( self.x_var_oRLO[selection][i], self.y_var_oRLO[selection][i], color="black", ) artist = ax.scatter( self.x_var_oRLO[selection][i][-1], self.y_var_oRLO[selection][i][-1], marker=self.MARKERS_COLORS_LEGENDS [flag][0], linewidths=self.MARKERS_COLORS_LEGENDS [flag][1], c=self.MARKERS_COLORS_LEGENDS[flag][2], s=self.marker_size, ) else: ax.plot( self.x_var[selection][i], self.y_var[selection][i], marker=".", color="black", ) artist = ax.scatter( self.x_var[selection][i], self.y_var[selection][i], marker=self.MARKERS_COLORS_LEGENDS [flag][0], linewidths=self.MARKERS_COLORS_LEGENDS [flag][1], c=self.MARKERS_COLORS_LEGENDS[flag][2], s=self.marker_size, ) else: artist = ax.scatter( self.x_var[selection], self.y_var[selection], marker=self.MARKERS_COLORS_LEGENDS[flag][0], linewidths=self.MARKERS_COLORS_LEGENDS[flag] [1], c=self.MARKERS_COLORS_LEGENDS[flag][2], s=self.marker_size, ) else: if self.z_var is not None: if self.slice_at_RLO: for i in range(len(self.x_var[selection])): if not isinstance(self.x_var_oRLO [selection][i], float): if not any(np.isnan( self.x_var_oRLO[selection][i]))\ and not any(np.isnan( self.y_var_oRLO[selection][i])): ax.plot( self.x_var[selection][i], self.y_var[selection][i], marker=".", color="black", ) ax.plot( self.x_var_oRLO[selection][i], self.y_var_oRLO[selection][i], color="black", ) artist = ax.scatter( self.x_var_oRLO[selection][i][-1], self.y_var_oRLO[selection][i][-1], marker=self.MARKERS_COLORS_LEGENDS [flag][0], linewidths= self.MARKERS_COLORS_LEGENDS[flag] [1], c=self.z_var[selection][i], s=self.marker_size, alpha=0.5, vmin=self.zmin, vmax=self.zmax, ) else: ax.plot( self.x_var[selection][i], self.y_var[selection][i], marker=".", color="black", ) artist = ax.scatter( self.x_var[selection][i], self.y_var[selection][i], marker=self.MARKERS_COLORS_LEGENDS [flag][0], linewidths= self.MARKERS_COLORS_LEGENDS[flag] [1], c=self.z_var[selection][i], s=self.marker_size, alpha=0.5, vmin=self.zmin, vmax=self.zmax, ) else: artist = ax.scatter( self.x_var[selection], self.y_var[selection], marker=self.MARKERS_COLORS_LEGENDS[flag] [0], linewidths=self.MARKERS_COLORS_LEGENDS [flag][1], c=self.z_var[selection], s=self.marker_size, vmin=self.zmin, vmax=self.zmax, ) artist_last = artist # collect artists for legend if self.MARKERS_COLORS_LEGENDS[flag][3] not in artists_legend: artists.append(artist) artists_legend.append(self.MARKERS_COLORS_LEGENDS[flag][3]) # add labels if row==self.n_rows-1 or idx+self.n_cols in legend_idxs: self.set_xlabel(ax) ax.xaxis.set_tick_params(labelbottom=True) else: ax.set_xlabel("") if col==0 or idx-1 in legend_idxs: self.set_ylabel(ax) ax.yaxis.set_tick_params(labelleft=True) else: ax.set_ylabel("") self.set_xlim(ax) self.set_ylim(ax) # write slice value on plot slice_text = "" self.slice_text_kwargs['transform'] = ax.transAxes if self.slice_3D_n>1: slice_text += self.slice_3D_text.format(round(0.5*( self.slice_3D_var_range[0]+self.slice_3D_var_range[1])\ ,15)) if self.slice_4D_n>1: slice_text += "~" if self.slice_4D_n>1: slice_text += self.slice_4D_text.format(round(0.5*( self.slice_4D_var_range[0]+self.slice_4D_var_range[1])\ ,15)) ax.text(s=slice_text, **self.slice_text_kwargs) # add color bar if artist_last is not None: self.set_color_bar(artist_last, l_ax) # add legend if self.legend2D["title"] is not None: if self.grid_3D and self.slice_3D_n==1: self.legend2D["title"] = self.slice_3D_text.format(round(0.5*( self.slice_3D_var_range[0]+self.slice_3D_var_range[1])\ ,15)) + '\\\\' + self.legend2D["title"] if self.grid_4D and self.slice_4D_n==1: self.legend2D["title"] = self.slice_4D_text.format(round(0.5*( self.slice_4D_var_range[0]+self.slice_4D_var_range[1])\ ,15)) + '\\\\' + self.legend2D["title"] l_ax.axis('off') sorted_artists_legend = sorted(artists_legend) sorted_artists = [] for legend_entry_text in sorted_artists_legend: sorted_artists.append(artists[artists_legend.index( legend_entry_text)]) if self.legend2D["bbox_to_anchor"][0]>=1 and\ "left" in self.legend2D["loc"]: self.legend2D["bbox_to_anchor"] = (0.0, self.legend2D ["bbox_to_anchor"][1]) self.set_legend(l_ax, sorted_artists, sorted_artists_legend)