Source code for posydon.utils.common_functions

"""Common functions to be used while running populations."""


__authors__ = [
    "Konstantinos Kovlakas <Konstantinos.Kovlakas@unige.ch>",
    "Devina Misra <devina.misra@unige.ch>",
    "Emmanouil Zapartas <ezapartas@gmail.com>",
    "Simone Bavera <Simone.Bavera@unige.ch>",
    "Nam Tran <tranhn03@gmail.com>",
    "Ying Qin <<yingqin2013@hotmail.com>",
    "Jeffrey Andrews <jeffrey.andrews@northwestern.edu>",
    "Tassos Fragos <Anastasios.Fragkos@unige.ch>",
    "Scott Coughlin <scottcoughlin2014@u.northwestern.edu>",
    "Kyle Akira Rocha <kylerocha2024@u.northwestern.edu>",
    "Matthias Kruckow <Matthias.Kruckow@unige.ch>",
    "Camille Liotine <cliotine@u.northwestern.edu>",
]


import os
import numpy as np
import pandas as pd
from scipy.interpolate import interp1d
from scipy.optimize import newton
from scipy.integrate import quad
from posydon.utils import constants as const
from posydon.utils.posydonwarning import Pwarn
import copy
from scipy.interpolate import PchipInterpolator
from posydon.utils.limits_thresholds import (THRESHOLD_CENTRAL_ABUNDANCE,
    THRESHOLD_HE_NAKED_ABUNDANCE, REL_LOG10_BURNING_THRESHOLD,
    LOG10_BURNING_THRESHOLD, STATE_NS_STARMASS_UPPER_LIMIT,
    RL_RELATIVE_OVERFLOW_THRESHOLD, LG_MTRANSFER_RATE_THRESHOLD
)

PATH_TO_POSYDON = os.environ.get("PATH_TO_POSYDON")


# Constants related to inferring star states
STATE_UNDETERMINED = "undetermined_evolutionary_state"

# ALL POSSIBLE STAR STATES
BURNING_STATES = ["Core_H_burning", "Core_He_burning",
                  "Shell_H_burning", "Central_He_depleted",
                  "Central_C_depletion"]
RICHNESS_STATES = ["H-rich", "stripped_He", "accreted_He"]
COMPACT_OBJECTS = ["WD", "NS", "BH","massless_remnant"]

ALL_STAR_STATES = COMPACT_OBJECTS + [STATE_UNDETERMINED]
ALL_STAR_STATES.extend(["{}_{}".format(rich_in, burning)
                        for rich_in in RICHNESS_STATES
                        for burning in BURNING_STATES])

# Mass-transfer cases in form of integer flags
MT_CASE_NO_RLO = 0
MT_CASE_A = 1
MT_CASE_B = 2
MT_CASE_C = 3
MT_CASE_BA = 4
MT_CASE_BB = 5
MT_CASE_BC = 6
MT_CASE_NONBURNING = 8
MT_CASE_UNDETERMINED = 9

# All cases meaning RLO is happening
ALL_RLO_CASES = set([MT_CASE_A, MT_CASE_B, MT_CASE_C,
                     MT_CASE_BA, MT_CASE_BB, MT_CASE_BC,
                     MT_CASE_NONBURNING])

# Conversion of integer mass-transfer flags to strings
MT_CASE_TO_STR = {
    MT_CASE_NO_RLO: "no_RLO",
    MT_CASE_A: "A",
    MT_CASE_B: "B",
    MT_CASE_C: "C",
    MT_CASE_BA: "BA",
    MT_CASE_BB: "BB",
    MT_CASE_BC: "BC",
    MT_CASE_NONBURNING: "nonburning",
    MT_CASE_UNDETERMINED: "undetermined_MT"
}

# Conversion of strings to integer mass-transfer flags
MT_STR_TO_CASE = {string: integer for integer, string
                  in MT_CASE_TO_STR.items()}

DEFAULT_CE_OPTION_FOR_LAMBDA = \
    "lambda_from_profile_gravitational_plus_internal_minus_recombination"


[docs] def is_number(s): """Check if the input can be converted to a float.""" try: float(s) return True except ValueError: return False
[docs] def stefan_boltzmann_law(L, R): """Compute the effective temperature give the luminosity and radius.""" #TODO: check for invalid or negative inputs return (L * const.Lsun / (4.0 * np.pi * (R*const.Rsun) ** 2.0) / const.boltz_sigma) ** (1.0 / 4.0)
[docs] def rzams(m, z=0.02, Zsun=0.02): """Evaluate the zero age main sequence radius [1]_. Parameters ---------- m : array_like The masses of the stars in Msun. z : float The metallicity of the star. Returns ------- ndarray Array of same size as `m` containing the ZAMS radii of the stars (Rsun) References ---------- .. [1] Tout C. A., Pols O. R., Eggleton P. P., Han Z., 1996, MNRAS, 281, 257 """ #TODO: check for invalid or negative inputs m = np.asanyarray(m) xz = [ 0.0, 3.970417e-01, -3.2913574e-01, 3.4776688e-01, 3.7470851e-01, 9.011915e-02, 8.527626e+00, -2.441225973e+01, 5.643597107e+01, 3.706152575e+01, 5.4562406e+00, 2.5546e-04, -1.23461e-03, -2.3246e-04, 4.5519e-04, 1.6176e-04, 5.432889e+00, -8.62157806e+00, 1.344202049e+01, 1.451584135e+01, 3.39793084e+00, 5.563579e+00, -1.032345224e+01, 1.944322980e+01, 1.897361347e+01, 4.16903097e+00, 7.8866060e-01, -2.90870942e+00, 6.54713531e+00, 4.05606657e+00, 5.3287322e-01, 5.86685e-03, -1.704237e-02, 3.872348e-02, 2.570041e-02, 3.83376e-03, 1.715359e+00, 6.2246212e-01, -9.2557761e-01, -1.16996966e+00, -3.0631491e-01, 6.597788e+00, -4.2450044e-01, -1.213339427e+01, -1.073509484e+01, -2.51487077e+00, 1.008855000e+01, -7.11727086e+00, -3.167119479e+01, -2.424848322e+01, -5.33608972e+00, 1.012495e+00, 3.2699690e-01, -9.23418e-03, -3.876858e-02, -4.12750e-03, 7.490166e-02, 2.410413e-02, 7.233664e-02, 3.040467e-02, 1.97741e-03, 1.077422e-02, 3.082234e+00, 9.447205e-01, -2.15200882e+00, -2.49219496e+00, -6.3848738e-01, 1.784778e+01, -7.4534569e+00, -4.896066856e+01, -4.005386135e+01, -9.09331816e+00, 2.2582e-04, -1.86899e-03, 3.88783e-03, 1.42402e-03, -7.671e-05 ] lzs = np.log10(z / Zsun) msp = np.zeros(17) msp[0] = 0.0 msp[1] = xz[1] + lzs * (xz[2] + lzs * (xz[3] + lzs * (xz[4] + lzs * xz[5]))) msp[2] = xz[6] + lzs * (xz[7] + lzs * (xz[8] + lzs * (xz[9] + lzs * xz[10]))) msp[3] = xz[11] + lzs * (xz[12] + lzs * (xz[13] + lzs * (xz[14] + lzs * xz[15]))) msp[4] = xz[16] + lzs * (xz[17] + lzs * (xz[18] + lzs * (xz[19] + lzs * xz[20]))) msp[5] = xz[21] + lzs * (xz[22] + lzs * (xz[23] + lzs * (xz[24] + lzs * xz[25]))) msp[6] = xz[26] + lzs * (xz[27] + lzs * (xz[28] + lzs * (xz[29] + lzs * xz[30]))) msp[7] = xz[31] + lzs * (xz[32] + lzs * (xz[33] + lzs * (xz[34] + lzs * xz[35]))) msp[8] = xz[36] + lzs * (xz[37] + lzs * (xz[38] + lzs * (xz[39] + lzs * xz[40]))) msp[9] = xz[41] + lzs * (xz[42] + lzs * (xz[43] + lzs * (xz[44] + lzs * xz[45]))) msp[10] = xz[46] + lzs * (xz[47] + lzs * (xz[48] + lzs * (xz[49] + lzs * xz[50]))) msp[11] = xz[51] + lzs * (xz[52] + lzs * (xz[53] + lzs * (xz[54] + lzs * xz[55]))) msp[12] = xz[56] + lzs * (xz[57] + lzs * (xz[58] + lzs * (xz[59] + lzs * xz[60]))) msp[13] = xz[61] msp[14] = xz[62] + lzs * (xz[63] + lzs * (xz[64] + lzs * (xz[65] + lzs * xz[66]))) msp[15] = xz[67] + lzs * (xz[68] + lzs * (xz[69] + lzs * (xz[70] + lzs * xz[71]))) msp[16] = xz[72] + lzs * (xz[73] + lzs * (xz[74] + lzs * (xz[75] + lzs * xz[76]))) mx = np.sqrt(m) r = ((msp[8] * m**2 + msp[9] * m**6) * mx + msp[10] * m**11 + (msp[11] + msp[12] * mx) * m**19) / ( msp[13] + msp[14] * m**2 + (msp[15] * m**8 + m**18 + msp[16] * m**19) * mx) return r
[docs] def roche_lobe_radius(m1, m2, a_orb=1): """Approximate the Roche lobe radius from [1]_. Parameters ---------- m1 : float, ndarray of floats the mass of the star for which we calculate the Roche lobe m2 : float, ndarray of floats the mass of the companion star a_orb : float, ndarray of floats Orbital separation. The return value will have the same unit. Returns ------- float, ndarray of floats Roche lobe radius in similar units as a_orb References ---------- .. [1] Eggleton, P. P. 1983, ApJ, 268, 368 """ ## catching if a_orb is an empty array or is an array with invalid ## separation values if isinstance(a_orb, np.ndarray): ## if array is empty, fill with NaN values if a_orb.size == 0: Pwarn("Trying to compute RL radius for binary with invalid" " separation", "EvolutionWarning") a_orb = np.full([1 if s==0 else s for s in a_orb.shape], np.nan, dtype=np.float64) ## if array contains invalid values, replace with NaN elif np.any(a_orb < 0): Pwarn("Trying to compute RL radius for binary with invalid" " separation", "EvolutionWarning") a_orb[a_orb < 0] = np.nan ## catching if a_orb is a float with invalid separation value elif a_orb < 0: Pwarn("Trying to compute RL radius for binary with invalid separation", "EvolutionWarning") a_orb = np.nan if isinstance(m1, np.ndarray): if m1.size == 0: Pwarn("Trying to compute RL radius for nonexistent object", "EvolutionWarning") m1 = np.full([1 if s==0 else s for s in m1.shape], np.nan, dtype=np.float64) elif np.any(m1 <= 0): Pwarn("Trying to compute RL radius for nonexistent object", "EvolutionWarning") m1[m1 <= 0] = np.nan elif m1 <= 0: Pwarn("Trying to compute RL radius for nonexistent object", "EvolutionWarning") m1 = np.nan if isinstance(m2, np.ndarray): if m2.size == 0: Pwarn("Trying to compute RL radius for nonexistent companion", "EvolutionWarning") m2 = np.full([1 if s==0 else s for s in m2.shape], np.nan, dtype=np.float64) elif np.any(m2 <= 0): Pwarn("Trying to compute RL radius for nonexistent companion", "EvolutionWarning") m2[m2 <= 0] = np.nan elif m2 <= 0: Pwarn("Trying to compute RL radius for nonexistent companion", "EvolutionWarning") m2 = np.nan q = m1/m2 RL = a_orb * (0.49 * q**(2. / 3.)) / ( 0.6 * q**(2. / 3.) + np.log(1 + q**(1. / 3)) ) return RL
[docs] def orbital_separation_from_period(period_days, m1_solar, m2_solar): """Apply the Third Kepler law. Parameters ---------- period_days : float Orbital period in days. m1_solar : float Mass of the one of the stars, in solar units. m2_solar : float Mass of the other star, in solar units. Returns ------- float The separation of the binary in solar radii. """ #TODO: check for invalid or negative inputs # cast to float64 to avoid overflow m1_solar = np.asarray(m1_solar, dtype="float64") m2_solar = np.asarray(m2_solar, dtype="float64") period_days = np.asarray(period_days, dtype="float64") separation_cm = (const.standard_cgrav * (m1_solar * const.Msun + m2_solar * const.Msun) / (4.0 * const.pi**2.0) * (period_days * const.day2sec) ** 2.0)**(1.0/3.0) separation_solar = separation_cm / const.Rsun return separation_solar
[docs] def orbital_period_from_separation(separation, m1, m2): """Apply the Third Kepler law. Parameters ---------- separation : float Orbital separation (semi-major axis) in Rsun. m1 : float Mass of one of the stars in solar units. m2 : type Mass of the other star in solar units. Returns ------- float The orbital period in days. """ #TODO: check for invalid or negative inputs return const.dayyer * ((separation / const.aursun)**3.0 / (m1 + m2)) ** 0.5
[docs] def eddington_limit(binary, idx=-1): """Calculate the Eddington limit & radtiative efficiency of compact object. Parameters ---------- binary : BinaryStar The binary object. Returns ------- tuple The Eddington accretion limit and radiative efficiency in solar units. """ if binary.star_1.state in ['NS', 'BH', 'WD']: accretor = binary.star_1 donor = binary.star_2 elif binary.star_2.state in ['NS', 'BH', 'WD']: accretor = binary.star_2 donor = binary.star_1 else: raise ValueError("Eddington limit is being calculated for a non-CO") state_acc = np.atleast_1d( np.asanyarray([*accretor.state_history, accretor.state])[idx]) m_acc = np.atleast_1d( np.asanyarray([*accretor.mass_history, accretor.mass], dtype=float)[idx]) * const.msol surface_h1 = np.atleast_1d( np.asanyarray([*donor.surface_h1_history, donor.surface_h1], dtype=float)[idx]) for i in range(len(state_acc)): if state_acc[i] is None: if any(j == 'NS' for j in accretor.state_history): state_acc[i] = 'NS' elif any(j == 'BH' for j in accretor.state_history): state_acc[i] = 'BH' elif any(j == 'WD' for j in accretor.state_history): state_acc[i] = 'WD' else: raise ValueError('COtype must be "BH", "NS", or "WD"') if pd.isna(surface_h1[i]): surface_h1[i] = 0.7155 if state_acc[i] == "BH": r_isco = 6 #TODO: get r_isco as input/calculate from spin # m_ini is the accretor mass at zero spin m_ini = m_acc[i] * np.sqrt(r_isco / 6) eta = 1 - np.sqrt(1 - (min(m_acc[i], np.sqrt(6) * m_ini) / (3 * m_ini))**2) else: # 1.25 * 10**6 cm acc_radius = CO_radius(m_acc[i], state_acc[i]) * const.Rsun eta = const.standard_cgrav*m_acc[i]/(acc_radius*const.clight**2) # This is the mass accretion rate corresponding to the # Eddington luminosity, L_edd = eta * mdot_edd * clightˆ2 (cgs units) mdot_edd = (4 * np.pi * const.standard_cgrav * m_acc[i] / (0.2 * (1 + surface_h1[i]) * eta * const.clight)) return mdot_edd / (const.msol / const.secyer), eta
[docs] def beaming(binary): """Calculate the geometrical beaming of a super-Eddington accreting source [1]_, [2]_. Compute the super-Eddington isotropic-equivalent accretion rate and the beaming factor of a star. This does not change the intrinsic accretion onto the accretor and is an observational effect due to the inflated structure of the accretion disc that beams the outgoing X-ray emission. This is important for observing super-Eddington X-ray sources (e.g. ultraluminous X-ray sources). In case of a BH we are assuming that it has zero spin which is not a good approximation for high accretion rates. Parameters ---------- binary : BinaryStar The binary object. Returns ------- tuple The super-Eddington isotropic-equivalent accretion rate and beaming factor respcetively in solar units. References ---------- .. [1] Shakura, N. I. & Sunyaev, R. A. 1973, A&A, 24, 337 .. [2] King A. R., 2008, MNRAS, 385, L113 """ mdot_edd = eddington_limit(binary, idx=-1)[0] if binary.lg_mtransfer_rate is None: rlo_mdot = np.nan else: rlo_mdot = 10**binary.lg_mtransfer_rate if rlo_mdot >= mdot_edd: if rlo_mdot > 8.5 * mdot_edd: # eq. 8 in King A. R., 2009, MNRAS, 393, L41-L44 b = 73 / (rlo_mdot / mdot_edd)**2 else: b = 1 # Shakura, N. I. & Sunyaev, R. A. 1973, A&A, 24, 337 mdot_beam = mdot_edd * (1 + np.log(rlo_mdot / mdot_edd)) / b else: b = 1 mdot_beam = rlo_mdot return mdot_beam, b
[docs] def bondi_hoyle(binary, accretor, donor, idx=-1, wind_disk_criteria=True, scheme='Hurley+2002'): """Calculate the Bondi-Hoyle accretion rate of a binary [1]_. Parameters ---------- binary : BinaryStar The binary which accretion rate is required. accretor : SingleStar The accretor in the binary. donor : SingleStar The donor in the binary. idx : int default: -1 wind_disk_criteria : bool default: True, see [5]_ scheme : str There are different options: - 'Hurley+2002' : following [3]_ - 'Kudritzki+2000' : following [7]_ Returns ------- float The Bondi-Hoyle accretion rate in solar units. Notes ----- An approximation is used for the accretion rate [2]_ and the wind velocity of the donor is moddeled as in [3]_, [6]_. Also see [4]_. References ---------- .. [1] Bondi, H., & Hoyle, F. 1944, MNRAS, 104, 273 .. [2] Boffin, H. M. J., & Jorissen, A. 1988, A&A, 205, 155 .. [3] Hurley, J. R., Tout, C. A., & Pols, O. R. 2002, MNRAS, 329, 897 .. [4] Belczynski, K., Kalogera, V., Rasio, F. A., et al. 2008, ApJS, 174, 223 .. [5] Sen, K. ,Xu, X. -T., Langer, N., El Mellah, I. , Schurmann, C., & Quast, M., 2021, A&A .. [6] Sander A. A. C., Vink J. S., 2020, MNRAS, 499, 873 .. [7] Kudritzki, R.-P., & Puls, J. 2000, ARA&A, 38, 613 """ alpha = 1.5 G = const.standard_cgrav * 1e-3 # 6.67428e-11 m3 kg-1 s-2 Msun = const.Msun * 1e-3 # 1.988547e30 kg Rsun = const.Rsun * 1e-2 # 6.9566e8 m sep = np.atleast_1d( np.asanyarray([*binary.separation_history, binary.separation], dtype=float)[idx]) ecc = np.atleast_1d( np.asanyarray([*binary.eccentricity_history, binary.eccentricity], dtype=float)[idx]) #TODO: use stars in the binary as donor and accretor m_acc = np.atleast_1d( np.asanyarray([*accretor.mass_history, accretor.mass], dtype=float)[idx]) m = np.atleast_1d( np.asanyarray([*donor.mass_history, donor.mass], dtype=float)[idx]) lg_mdot = np.atleast_1d( np.asanyarray([*donor.lg_wind_mdot_history, donor.lg_wind_mdot], dtype=float)[idx]) he_core_mass = np.atleast_1d( np.asanyarray([*donor.he_core_radius_history, donor.he_core_radius], dtype=float)[idx]) log_R = np.atleast_1d( np.asanyarray([*donor.log_R_history, donor.log_R], dtype=float)[idx]) radius = 10**log_R # Rsun surface_h1 = np.atleast_1d( np.asanyarray([*donor.surface_h1_history, donor.surface_h1], dtype=float)[idx]) L = np.atleast_1d( np.asanyarray([*donor.log_L_history, donor.log_L], dtype=float)[idx]) Teff = stefan_boltzmann_law(10**L, radius) beta = np.empty_like(sep) # Hurley, J. R., Tout, C. A., & Pols, O. R. 2002, MNRAS, 329, 897 if scheme == 'Hurley+2002': # For H-rich stars beta[np.logical_and(he_core_mass, radius > 900.0)] = 0.125 beta[m > 120.0] = 7.0 beta[m < 1.4] = 0.5 cond = np.logical_and(m >= 1.4, m <= 120.0) beta[cond] = 0.5 + (m[cond] - 1.4) / (120.0 - 1.4) * (6.5) # For He-rich stars beta[np.logical_and(surface_h1 <= 0.01, m > 120.0)] = 7.0 beta[np.logical_and(surface_h1 <= 0.01, m < 10.0)] = 0.125 mass_cond = np.logical_and(m >= 10.0, m <= 120.0) he_cond = np.logical_and(mass_cond, surface_h1 <= 0.01) beta[he_cond] = 0.125 + (m[he_cond] - 10.0) / (120.0 - 10.0) * (6.875) f_m = np.sqrt(beta) # Kudritzki, R.-P., & Puls, J. 2000, ARA&A, 38, 613 elif scheme == 'Kudritzki+2000': for i in range(len(m)): if Teff[i] >= 21000: f_m = 2.65 elif Teff[i] <= 10000: f_m = 1.0 else: f_m = 1.4 v_esc = np.sqrt(2 * G * m * Msun / (radius * Rsun)) # m/s v_wind = v_esc * f_m # m/s # Sander A. A. C., Vink J. S., 2020, MNRAS, 499, 873 for i in range(len(m)): if (surface_h1[i] < 0.4 and Teff[i] > 1.0e4): if lg_mdot[i] >= -5.25: slope = (3.7 - 3.25) / (-2.5 + 5.25) else: slope = (3.25 - 3.75) / (-5.25 + 7.25) v_wind[i] = 10 ** (slope * lg_mdot[i] + 3.25 + 5.25 * slope) * 1000 else: pass n = np.sqrt((G * (m_acc + m) * Msun) / ((radius * Rsun)**3)) t0 = np.random.rand(len(sep)) * 2 * np.pi / n E = newton(lambda x: x - ecc * np.sin(x) - n * t0, np.ones_like(sep) * np.pi / 2, maxiter=100) b = sep * Rsun * np.sqrt(1 - ecc**2) r_vec = np.array([sep * Rsun * (np.cos(E) - ecc), b * np.sin(E)]) v_dir = np.array([-sep * Rsun * np.sin(E), b * np.cos(E)]) r = np.linalg.norm(r_vec, axis=0) v_dir_norm = np.linalg.norm(v_dir, axis=0) k = np.einsum('ij,ij->j', r_vec, v_dir) / (r * v_dir_norm) # cos(angle) v = np.sqrt(G * (m + m_acc) * Msun * ((2 / r) - (1 / (sep * Rsun)))) # m/s v_rel = np.sqrt(v**2 + v_wind**2 + 2 * v * v_wind * k) # m/s # Bondi, H., & Hoyle, F. 1944, MNRAS, 104, 273 mdot_acc = alpha * ((G * m_acc * Msun)**2 / (2 * v_rel**3 * v_wind * r**2)) * 10**lg_mdot # eq. 10 in Sen, K. ,Xu, X. -T., Langer, N., El Mellah, I. , Schurmann, C., # Quast, M., 2021, A&A if wind_disk_criteria: # check if accretion disk will form eta = 1.0/3.0 # wind accretion efficiency between 1 and 1/3 gamma = 1.0 # for non-spinning BH q = m / m_acc rdisk_div_risco = ( (2/3) * (eta / (1 + q)) ** 2 * (v / (const.clight * 0.01)) ** (-2) * (1 + (v_wind / v) ** 2) ** (-4) * gamma ** (-1)) for i in range(len(rdisk_div_risco)): if rdisk_div_risco[i] <= 1: # No disk formed mdot_acc[i] = 10**-99.0 # make it Eddington-limited mdot_edd = eddington_limit(binary, idx=idx)[0] mdot_acc = np.minimum(mdot_acc, mdot_edd) return np.squeeze(mdot_acc)
[docs] def rejection_sampler(x=None, y=None, size=1, x_lim=None, pdf=None): """Generate a sample from a 1d PDF using the acceptance-rejection method. Parameters ---------- x : array_like The x-values of the PDF. y : array_like The y-values of the PDF. size : int The number of random numbers to generate. x_lim : array float The boundary where the pdf function is defined if passed as pdf. pdf : func The pdf function Returns ------- ndarray An array with `size` random numbers generated from the PDF. """ if pdf is None: assert np.all(y >= 0.0) try: pdf = interp1d(x, y) except ValueError: idxs = np.argsort(x) pdf = interp1d(x.take(idxs), y.take(idxs)) x_rand = np.random.uniform(x.min(), x.max(), size) y_rand = np.random.uniform(0, y.max(), size) values = x_rand[y_rand <= pdf(x_rand)] while values.shape[0] < size: n = size - values.shape[0] x_rand = np.random.uniform(x.min(), x.max(), n) y_rand = np.random.uniform(0, y.max(), n) values = np.hstack([values, x_rand[y_rand <= pdf(x_rand)]]) else: x_rand = np.random.uniform(x_lim[0], x_lim[1], size) pdf_max = max(pdf(np.random.uniform(x_lim[0], x_lim[1], 50000))) y_rand = np.random.uniform(0, pdf_max, size) values = x_rand[y_rand <= pdf(x_rand)] while values.shape[0] < size: n = size - values.shape[0] x_rand = np.random.uniform(x_lim[0], x_lim[1], n) y_rand = np.random.uniform(0, pdf_max, n) values = np.hstack([values, x_rand[y_rand <= pdf(x_rand)]]) return values
[docs] def inverse_sampler(x, y, size=1): """Sample from a PDF using the inverse-sampling method. Parameters ---------- x : array-like The x-axis coordinates of the points where the PDF is defined. y : array-like The probablity density at `x` (or a scaled version of it). size : int Number of samples to generate. Returns ------- array The sample drawn from the PDF. """ # x should be sorted assert np.all(np.diff(x) > 0) # y should be above 0 assert np.all(y >= 0.0) # compute the area of each trapezoid segment_areas = 0.5 * (y[1:]+y[:-1]) * (x[1:]-x[:-1]) # their cumulative sum denotes the scaled CDF at each x value cumsum_areas = np.cumsum(segment_areas) total_area = cumsum_areas[-1] # start the inverse sampling u = np.random.uniform(size=size) # index of "bin" where each sampled value corresponds too u_indices = np.searchsorted(cumsum_areas, u * total_area) # the area that should be covered from the end of the previous bin delta_y = total_area * u - cumsum_areas[u_indices-1] delta_y[u_indices == 0] = total_area * u[u_indices == 0] # the width and height (of the cap) of each sample's bin dx_bins = x[u_indices+1] - x[u_indices] dy_bins = y[u_indices+1] - y[u_indices] sample = x[u_indices] + dx_bins * ( (y[u_indices]**2.0 + 2.0 * delta_y * dy_bins/dx_bins)**0.5 - y[u_indices]) / dy_bins # if nan values found, then flat CDF for which the inverse is undefined... where_nan = np.where(~np.isfinite(sample)) n_where_nan = len(where_nan[0]) # ... in that case, simply sample randomly from each flat bin! if n_where_nan: assert np.all(dy_bins[where_nan] == 0) sample[where_nan] = x[u_indices][where_nan] + ( dx_bins[where_nan] * np.random.uniform(size=n_where_nan)) # make sure that everything worked as expected assert np.all(np.isfinite(sample)) return sample
[docs] def histogram_sampler(x_edges, y, size=1): """Sample from an empirical PDF represented by a histogram. Parameters ---------- x_edges : array-like The edges of the bins of the histrogram. y : array-like The counts (or a scaled version of them) of the histogram. size : int Number of random values to produce. Returns ------- array The random sample. """ assert np.all(y >= 0.0) # make sure that the lengths of the input arrays are correct n_bins = len(y) assert n_bins > 0 and len(x_edges) == n_bins + 1 # first decide which will be the bin of each element in the sample bin_sample = np.random.choice(n_bins, replace=True, p=y/sum(y), size=size) sample = np.ones(size) * np.nan # select each bin and based on its uniform distribution, decide the sample bins_found = set(bin_sample) for bin_index in bins_found: in_this_bin = np.argwhere(bin_sample == bin_index)[:, 0] sample[in_this_bin] = np.random.uniform( x_edges[bin_index], x_edges[bin_index+1], size=len(in_this_bin)) assert(np.all(np.isfinite(sample))) return np.squeeze(sample)
[docs] def read_histogram_from_file(path): """Read a histogram from a CSV file. The expected format is: # comment line x[0], x[1], ..., x[n], x[n+1] y[0], y[1], ..., y[n] where # denotes a comment line (also empty lines are ignored), and `n` is the number of bins (notice that the first line contains n+1 elements.) Usage: bin_edges, bin_counts = read_histogram_from_file("a_histogram.csv"). Parameters ---------- path : str The path of the CSV file containing the histogram information. Returns ------- list of arrays The bin edges and bin counts of the histogram. """ with open(path, "r") as f: arrays = [] for line in f: line = line.strip() if len(line) == 0 or line.startswith("#"): continue arrays.append(np.fromstring(line.strip(), dtype=float, sep=",")) if len(arrays) > 2: raise IndexError("More than two lines found in the histogram" " document.") if len(arrays) < 2: raise IndexError("Less than two lines found in the histogram" " document.") if len(arrays[0]) - 1 != len(arrays[1]): raise IndexError("The number of elements in the second data line is" " not one less than the number in the first data" " line.") return arrays
[docs] def inspiral_timescale_from_separation(star1_mass, star2_mass, separation, eccentricity): """Compute the timescale of GW inspiral using the orbital separation. Based on [1]_: https://journals.aps.org/pr/abstract/10.1103/PhysRev.136.B1224 Parameters ---------- star1_mass : float Mass of star 1 in Msun. star2_mass : float Mass of star 2 in Msun. separation : type Binary separation in Rsun. eccentricity : type Eccentricity of the binary orbit. Must be 0 <= ecc <1. Returns ------- float The inspiral time scale of the two black holes. References ---------- .. [1] Peters 1964 Phys. Rev. 136, B1224 """ # NOTE we should check that this matches up with Maggiori equations G = const.standard_cgrav c = const.clight Msun = const.Msun Rsun = const.Rsun secyer = const.secyer m1 = star1_mass * Msun m2 = star2_mass * Msun a = separation * Rsun ecc = eccentricity if m1 <= 0: raise ValueError("Mass of star 1 is <= 0, which is not a physical value.") if m2 <= 0: raise ValueError("Mass of star 2 is <= 0, which is not a physical value.") if a <= 0: raise ValueError("Separation is <= 0, which is not a physical value.") if ecc < 0: raise ValueError("Eccentricity is < 0, which is not a physical value.") if ecc >= 1: raise ValueError("Eccentricity is >= 1, which is not a physical value.") # Eq. (5.9) in Peters 1964 Phys. Rev. 136, B1224 beta = (64.0 / 5) * (G**3) * m1 * m2 * (m1 + m2) / (c**5) if ecc == 0: # Eq. (5.10) in Peters 1964 Phys. Rev. 136, B1224 T_merger = a**4 / (4 * beta) else: # Eq. (5.11) at e_0, i.e. a_0 = a(e_0), solved for c_0 in # Peters 1964 Phys. Rev. 136, B1224 def c_0(a0, e0): return ((a0 * (1 - e0**2)) * (e0**(-12.0 / 19)) * (1 + (121.0 / 304) * e0**2)**(-870.0 / 2299)) c0 = c_0(a, ecc) # Eq. (5.14) def integrand(e): return (e**(29. / 19) * (1 + (121. / 304) * e**2)**(1181.0 / 2299) / (1 - e**2)**(3.0 / 2)) # assume binary circularizes by the time it merges T_merger = (12.0 / 19) * ( (c0**4) / beta) * quad(integrand, 0.0, ecc)[0] # return T_merge in Myr return T_merger / (secyer * 1e6)
[docs] def inspiral_timescale_from_orbital_period(star1_mass, star2_mass, orbital_period, eccentricity): """Compute the timescale of GW inspiral using the orbital period. Based on [1]_: https://journals.aps.org/pr/abstract/10.1103/PhysRev.136.B1224 Parameters ---------- star1_mass : float Mass of star 1 in Msun. star2_mass : float Mass of star 2 in Msun. orbital_separation : type Binary separation in Rsun. eccentricity : type Eccentricity of the binary orbit. Must be 0 <= ecc <1. Returns ------- float The inspiral time scale of the two black holes in Myr. References ---------- .. [1] Peters 1964 Phys. Rev. 136, B1224 """ # NOTE we should check that this matches up with Maggiori equations separation = orbital_separation_from_period(orbital_period, star1_mass, star2_mass) T_merge = inspiral_timescale_from_separation(star1_mass, star2_mass, separation, eccentricity) return T_merge
[docs] def spin_stable_mass_transfer(spin_i, star_mass_preMT, star_mass_postMT): """Calculate the spin of an accreting BH under stable mass transfer. Based on Thorne 1974 eq. 2a. """ if ((star_mass_preMT is None) or (star_mass_preMT<=0.0) or (star_mass_postMT is None) or (star_mass_postMT<=0.0) or (spin_i is None) or (spin_i<0.0)): return None z1 = 1+(1-spin_i**2)**(1/3)*((1+spin_i)**(1/3)+(1-spin_i)**(1/3)) z2 = (3*spin_i**2+z1**2)**0.5 r_isco = 3 + z2 - ((3-z1)*(3+z1+2*z2))**0.5 if (1 <= star_mass_postMT / star_mass_preMT and star_mass_postMT / star_mass_preMT <= r_isco**0.5): spin = r_isco**(0.5) / 3 * (star_mass_preMT / star_mass_postMT) * ( 4 - (3 * r_isco * star_mass_preMT**2 / star_mass_postMT**2 - 2)**(0.5)) elif star_mass_postMT / star_mass_preMT > r_isco**(0.5): spin = 1. else: spin = np.nan return spin
[docs] def check_state_of_star(star, i=None, star_CO=False): """Get the state of a SingleStar. Arguments ---------- star: SingleStar The star for which the state will be computed. i : integer Index of the model for which we want to calculate the state of the SingleStar object. Default = -1 (the final). star_CO: bool True if we want to assume a compact object (WD/NS/BH). False if the state will be calculated by its attributes. Returns ------- state : str state at of the star object at index i of the history. """ if star_CO: star_mass = star.mass_history[i] if i is not None else star.mass if 'WD' == star.state_history[-1] or star.state == 'WD': return 'WD' else: return infer_star_state(star_mass=star_mass, star_CO=True) if i is None: star_mass = star.mass surface_h1 = star.surface_h1 center_h1 = star.center_h1 center_he4 = star.center_he4 center_c12 = star.center_c12 log_LH = star.log_LH log_LHe = star.log_LHe log_Lnuc = star.log_Lnuc else: star_mass = star.mass_history[i] surface_h1 = star.surface_h1_history[i] center_h1 = star.center_h1_history[i] center_he4 = star.center_he4_history[i] center_c12 = star.center_c12_history[i] log_LH = star.log_LH_history[i] log_LHe = star.log_LHe_history[i] log_Lnuc = star.log_Lnuc_history[i] return infer_star_state(star_mass=star_mass, surface_h1=surface_h1, center_h1=center_h1, center_he4=center_he4, center_c12=center_c12, log_LH=log_LH, log_LHe=log_LHe, log_Lnuc=log_Lnuc, star_CO=False)
[docs] def check_state_of_star_history_array(star, N=1, star_CO=False): """Calculate the evolutionary states with an array of history data. Parameters ---------- star : SingleStar The star for which the state will be computed. N : int Number of history steps (from the end), to calculate the state. star_CO : bool If `True`, assume it's a compact object. Returns ------- list of str The state(s) in a list. """ return [check_state_of_star(star, i, star_CO) for i in range(-N, 0)]
[docs] def get_binary_state_and_event_and_mt_case(binary, interpolation_class=None, i=None, verbose=False): """Infer the binary state, event and mass transfer case. Parameters ---------- binary : BinaryStar The POSYDON binary star. i : int The index of the history in which we want to calculate the state of the binary object. Default (None) is the current state. Returns ------- binary_state : str One of 'detached', 'contact', 'RLO1' and 'RLO2'. binary_event : str Options are 'oRLO1' or 'oRLO2' (onset of RLO, the start of RLO), 'oCE1', 'oCE2', 'oDoubleCE1', 'oDoubleCE2', 'CC1', 'CC2'. mass transfer case : str 'caseA', 'caseB', etc. Examples -------- If 'detached' then returns ['detached', None, None]. If 'contact' then returns ['contact', None] or ['oCE1', 'oDoubleCE1'] or ['oDoubleCE2', None]. If RLO then returns either ['RLO1', None, 'caseXX'] or ['RLO2', None, 'caseXX'] or maybe ['RLO2', 'oRLO2', 'caseXX']. """ # initializing: ['binary_state','binary_event','MT_case'] if binary is None: return [None, None, 'None'] if interpolation_class == 'not_converged': return [None, None, 'None'] elif interpolation_class == 'initial_MT': return ['initial_RLOF', None, 'None'] if i is None: lg_mtransfer = binary.lg_mtransfer_rate rl_overflow1 = binary.rl_relative_overflow_1 rl_overflow2 = binary.rl_relative_overflow_2 state1, state2 = binary.star_1.state, binary.star_2.state gamma1, gamma2 = binary.star_1.center_gamma, binary.star_2.center_gamma else: lg_mtransfer = binary.lg_mtransfer_rate_history[i] rl_overflow1 = binary.rl_relative_overflow_1_history[i] rl_overflow2 = binary.rl_relative_overflow_2_history[i] state1 = binary.star_1.state_history[i] state2 = binary.star_2.state_history[i] try: gamma1 = binary.star_1.center_gamma_history[i] except IndexError: # this happens if compact object gamma1 = None try: gamma2 = binary.star_2.center_gamma_history[i] except IndexError: # this happens if compact object gamma2 = None # get numerical MT cases mt_flag_1 = infer_mass_transfer_case(rl_overflow1, lg_mtransfer, state1, verbose=verbose) mt_flag_2 = infer_mass_transfer_case(rl_overflow2, lg_mtransfer, state2, verbose=verbose) # convert to strings mt_flag_1_str = cumulative_mass_transfer_string([mt_flag_1]) mt_flag_2_str = cumulative_mass_transfer_string([mt_flag_2+10 if mt_flag_2\ in ALL_RLO_CASES else mt_flag_2]) rlof1 = mt_flag_1 in ALL_RLO_CASES rlof2 = mt_flag_2 in ALL_RLO_CASES no_rlof = (mt_flag_1 == MT_CASE_NO_RLO) and (mt_flag_2 == MT_CASE_NO_RLO) if rlof1 and rlof2: # contact condition result = ['contact', None, 'None'] if interpolation_class == 'unstable_MT': if rl_overflow1>=rl_overflow2: # star 1 initiated CE result = ['contact', 'oCE1', 'None'] # Check for double CE comp_star = binary.star_2 if comp_star.state not in ["H-rich_Core_H_burning", "stripped_He_Core_He_burning", "WD", "NS", "BH"]: result[1] = "oDoubleCE1" else: # star 2 initiated CE result = ['contact', 'oCE2', 'None'] # Check for double CE comp_star = binary.star_1 if comp_star.state not in ["H-rich_Core_H_burning", "stripped_He_Core_He_burning", "WD", "NS", "BH"]: result[1] = "oDoubleCE2" return result elif no_rlof: # no MT in any star result = ['detached', None, 'None'] elif rlof1 and not rlof2: # only in star 1 result = ['RLO1', None, mt_flag_1_str] if interpolation_class == 'unstable_MT': return ['RLO1', 'oCE1', mt_flag_1_str] # if prev_state not in ALL_RLO_CASES: # return ['RLO1', 'oRLO1', mt_flag_1_str] elif rlof2 and not rlof1: # only in star 2 result = ['RLO2', None, mt_flag_2_str] if interpolation_class == 'unstable_MT': return ['RLO2', 'oCE2', mt_flag_2_str] else: # undetermined in any star result = ["undefined", None, 'None'] if ("Central_C_depletion" in state1 or "Central_He_depleted" in state1 or (gamma1 is not None and gamma1 >= 10.0)): # WD formation result[1] = "CC1" elif ("Central_C_depletion" in state2 or "Central_He_depleted" in state2 or (gamma2 is not None and gamma2 >= 10.0)): # WD formation result[1] = "CC2" return result
[docs] def get_binary_state_and_event_and_mt_case_array(binary, N=None, verbose=False): """Calculate the evolutionary states with an array of history data. Arguments ---------- binary: POSYDON BinaryStar object N : array index of the history in which we want to calculate the state of the SingleStar object Returns ------- binary_state : str(see in check_state_of_star) binary_event : MT_case : """ if N is None: # focus on current evolutonary state result = get_binary_state_and_event_and_mt_case(binary, i=None, verbose=verbose) binary_state = result[0] binary_event = result[1] MT_case = result[2] else: binary_state = [] binary_event = [] MT_case = [] for index in range(-N, 0): result = get_binary_state_and_event_and_mt_case(binary, i=index, verbose=verbose) binary_state.append(result[0]) binary_event.append(result[1]) MT_case.append(result[2]) return binary_state, binary_event, MT_case
[docs] def CO_radius(M, COtype): """Calculate the radius of a compact object based on its type and mass. Parameters ---------- M : float CO mass in Msun COtype : str Tyep of compact object. Accepted values: "BH", "NS", "WD" Returns ------- float Compact object radius in solar radii """ if M <= 0.: raise ValueError('Compact object mass must be a positive value') if COtype == "BH": R = Schwarzschild_Radius(M) elif COtype == "NS": # Some references: # Most, E. R., Weih, L. R., Rezzolla, L., & Schaffner-Bielich, J. 2018, # PhRvL, 120, 261103 # Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2020, ApJL, 892, L3 # Landry, P., Essick, R., & Chatziioannou, K. 2020, PhRvD, 101, 123007 R = 12.5e5/const.Rsun elif COtype == "WD": # Hansen C. J., Kawaler S. D., Trimble V., 2004, # Stellar Interiors. Springer New York R = 2.9e8*(M)**(-1./3.)/const.Rsun else: raise ValueError('COtype not in the list of valid options: "BH", "NS", "WD"') return R
[docs] def He_MS_lifetime(mass): """Calculate the lifetime of He burning in a star. Parameters ---------- mass : type Mass of star in solar masses Returns ------- float He MS time duration in yr. """ if mass <=0.0: raise ValueError(f"Too low mass: {mass}") elif mass < 2.0: he_t_ms = 10 ** 8 elif mass >= 2.0 and mass < 10.0: he_t_ms = 10**(-2.6094 * np.log10(mass) + 8.7855) elif mass >= 10.0 and mass < 100.0: he_t_ms = 10**(-0.69897 * np.log10(mass) + 6.875) else: # mass >= 100.0 he_t_ms = 3 * 10 ** 5 return he_t_ms
[docs] def Schwarzschild_Radius(M): """Calculate the Schwarzschild Radius of BH with mass M. Parameters ---------- M : float BH mass in Msun Returns ------- float Schwarzschild Radius in solar radii """ G = const.standard_cgrav c = const.clight Rsun = const.Rsun Msun = const.Msun # Kutner, M. L. 2003, Astronomy: A physical perspective, # Cambridge University Press return (2 * G * M * Msun / (c**2 * Rsun))
[docs] def flip_stars(binary): """Short summary. Parameters ---------- binary : type Description of parameter `binary`. Returns ------- type Description of returned object. """ star_1 = copy.copy(binary.star_1) star_2 = copy.copy(binary.star_2) setattr(binary, 'star_1', star_2) setattr(binary, 'star_2', star_1) state = getattr(binary, 'state') if state == 'RLO1': setattr(binary, 'state', 'RLO2') elif state == 'RLO2': setattr(binary, 'state', 'RLO1') event = getattr(binary, 'event') if event == 'oRLO1': setattr(binary, 'event', 'oRLO2') elif event == 'oRLO2': setattr(binary, 'event', 'oRLO1') if event == 'oCE1': setattr(binary, 'event', 'oCE2') elif event == 'oCE2': setattr(binary, 'event', 'oCE1') if event == 'CC1': setattr(binary, 'event', 'CC2') elif event == 'CC2': setattr(binary, 'event', 'CC1') state_history = np.array(getattr(binary, 'state_history')) cond_RLO2 = state_history == 'RLO1' cond_RLO1 = state_history == 'RLO2' state_history[cond_RLO2] = 'RLO2' state_history[cond_RLO1] = 'RLO1' setattr(binary, 'state_history', state_history.tolist()) event_history = np.array(getattr(binary, 'event_history')) cond_CC2 = event_history == 'CC1' cond_CC1 = event_history == 'CC2' event_history[cond_CC2] = 'CC2' event_history[cond_CC1] = 'CC1' cond_oRLO2 = event_history == 'oRLO1' cond_oRLO1 = event_history == 'oRLO2' event_history[cond_oRLO2] = 'oRLO2' event_history[cond_oRLO1] = 'oRLO1' cond_oCE2 = event_history == 'oCE1' cond_oCE1 = event_history == 'oCE2' event_history[cond_oCE2] = 'oCE2' event_history[cond_oCE1] = 'oCE1' setattr(binary, 'event_history', event_history.tolist()) for i in ['t_sync_rad_', 't_sync_conv_', 'rl_relative_overflow_']: value1 = getattr(binary, i+'1') value2 = getattr(binary, i+'2') value1_history = getattr(binary, i+'1_history') value2_history = getattr(binary, i+'2_history') setattr(binary, i+'1', value2) setattr(binary, i+'2', value1) setattr(binary, i+'1_history', value2_history) setattr(binary, i+'2_history', value1_history)
[docs] def set_binary_to_failed(binary): '''Set the properties of the binary to indicate that it has failed. Parameters ---------- binary : BinaryStar The binary to set to failed. ''' binary.state = "ERR" binary.event = "FAILED"
[docs] def infer_star_state(star_mass=None, surface_h1=None, center_h1=None, center_he4=None, center_c12=None, log_LH=None, log_LHe=None, log_Lnuc=None, star_CO=False): """Infer the star state (corresponding to termination flags 2 and 3).""" if star_CO: return "NS" if star_mass <= STATE_NS_STARMASS_UPPER_LIMIT else "BH" if surface_h1 is None: return STATE_UNDETERMINED rich_in = ("H-rich" if surface_h1 > THRESHOLD_HE_NAKED_ABUNDANCE else ("accreted_He" if round(surface_h1, 10)<round(center_h1,10) else "stripped_He")) burning_H = (log_LH > LOG10_BURNING_THRESHOLD and log_LH - log_Lnuc > REL_LOG10_BURNING_THRESHOLD) burning_He = (log_LHe > LOG10_BURNING_THRESHOLD and log_LHe - log_Lnuc > REL_LOG10_BURNING_THRESHOLD) H_in_core = center_h1 > THRESHOLD_CENTRAL_ABUNDANCE He_in_core = center_he4 > THRESHOLD_CENTRAL_ABUNDANCE C_in_core = center_c12 > THRESHOLD_CENTRAL_ABUNDANCE if not (H_in_core or He_in_core): # H and He are depleted if not C_in_core: burning = "Central_C_depletion" else: burning = "Central_He_depleted" # from now on, either H or He in core elif H_in_core: # no matter what the He abundance is if burning_H: burning = "Core_H_burning" else: burning = "non_burning" else: # from now on: only He, not H in core if burning_He: burning = "Core_He_burning" elif burning_H: burning = "Shell_H_burning" else: burning = "non_burning" return "{}_{}".format(rich_in, burning)
[docs] def infer_mass_transfer_case(rl_relative_overflow, lg_mtransfer_rate, donor_state, verbose=False): """Infer the mass-transfer case of a given star. Parameters ---------- rl_relative_overflow : float lg_mtransfer_rate : float donor_state : str Values of star parameters at a specific step. Returns ------- int The mass-transfer case integer flag. """ if rl_relative_overflow is None or lg_mtransfer_rate is None: return MT_CASE_NO_RLO if ((rl_relative_overflow <= RL_RELATIVE_OVERFLOW_THRESHOLD) and ((lg_mtransfer_rate <= LG_MTRANSFER_RATE_THRESHOLD) and (rl_relative_overflow < 0.0))): if verbose: print("checking rl_relative_overflow / lg_mtransfer_rate,", rl_relative_overflow, lg_mtransfer_rate) return MT_CASE_NO_RLO if "non_burning" in donor_state: return MT_CASE_NONBURNING elif "H-rich" in donor_state: if "Core_H_burning" in donor_state: return MT_CASE_A if ("Core_He_burning" in donor_state or "Shell_H_burning" in donor_state): return MT_CASE_B if ("Central_He_depleted" in donor_state or "Central_C_depletion" in donor_state): return MT_CASE_C elif "stripped_He" in donor_state: if "Core_He_burning" in donor_state: return MT_CASE_BA if ("Central_He_depleted" in donor_state or "Central_C_depletion" in donor_state): return MT_CASE_BB return MT_CASE_UNDETERMINED
[docs] def cumulative_mass_transfer_numeric(MT_cases): """Summarize the history of MT cases in a short list of integers. Parameters ---------- MT_cases : array-like A list of the integer MT flags at sequential history steps. If the cases are instead given in string format they are converted first. Returns ------- list of int A shorter list of integer MT flags, following these rules: i. If undetermined MT at any step, it is indicated in the beginning (as a warning) and ignored later. ii. If no RLO anywhere, then this is the only element in the returned list (or the second if undetermined MT at any step). Intermediate no-RLO phases (between RLO cases) are ignored. iii. Consequent same cases are reported only once (e.g., A, A, A -> A.) The end result is a list of integers indicating whether undetermined MT anywhere, if no RLO everywhere, or "changes" of MT cases. """ if len(MT_cases) == 0: return [MT_CASE_UNDETERMINED] if isinstance(MT_cases[0], str): cases = [MT_STR_TO_CASE[case] for case in MT_cases] else: cases = MT_cases.copy() result = [] # if undetermined MT anywhere, report it at the beginning and forget it if MT_CASE_UNDETERMINED in cases: result.append(MT_CASE_UNDETERMINED) cases = [case for case in cases if case != MT_CASE_UNDETERMINED] if len(cases) == 0: return result # if no RLO at all steps, report this, otherwise forget about these phases if MT_CASE_NO_RLO in cases: cases = [case for case in cases if case != MT_CASE_NO_RLO] if len(cases) == 0: result.append(MT_CASE_NO_RLO) return result # from now on... undetermined, and no_RLO are not in the list... curr_case = cases[0] result.append(curr_case) prev_case = curr_case for curr_case in cases[1:]: if curr_case != prev_case: result.append(curr_case) prev_case = curr_case return result
[docs] def cumulative_mass_transfer_string(cumulative_integers): """Convert a cumulative MT sequence to a string. Parameters ---------- cumulative_integers : list of int Typically, the output of `cumulative_mass_transfer_numeric`. Returns ------- str A summarization of the mass-tranfer cases in the form of a string, as opposed to the output of `cumulative_mass_transfer_numeric` (see this function to understand the rules of summarization). The character `?` in the beginning of the string indicates undetermined MT case at some point of the evolution. `no_RLO` indicates no RLO at any evolutionary step. `caseA`, `caseB`, etc., denote the corresponding MT cases. When multiple cases are found, they are indicated only when the begin, and are combined using `/`. For example: ?no_RLO : undetermined MT at few steps, otherwise no RLO. caseA : case A MT only (possible no_RLO at some points). ?caseA/B : undetermined MT somewhere, then case A, then case B. caseA/B/A : case A, then B, and A again (although unphysical). """ if len(cumulative_integers) == 0: return "?" result = "" added_case_word = False for integer in cumulative_integers: if integer == MT_CASE_UNDETERMINED: result += "?" elif integer == MT_CASE_NO_RLO: result += "no_RLO" elif ((integer in MT_CASE_TO_STR) or (integer-10 in MT_CASE_TO_STR)): if not added_case_word: result += "case_" added_case_word = True else: result += "/" if integer in MT_CASE_TO_STR: result += MT_CASE_TO_STR[integer] + '1' # from star 1 else: result += MT_CASE_TO_STR[integer-10] + '2' # from star 2 else: Pwarn("Unknown MT case: {}".format(integer),\ "InappropriateValueWarning") return result
[docs] def cumulative_mass_transfer_flag(MT_cases, shift_cases=False): """Get the cumulative MT string from a list of integer MT casses. Arguments ---------- MT_cases: list of integers A list of MT cases. shift_cases: bool Flag to shift non-physical cases like A1 after B1 will turn into B1. Returns ------- str A string summarizing the mass transfer cases. """ if shift_cases: case_1_min = MT_CASE_NO_RLO case_1_max = MT_CASE_UNDETERMINED case_2_min = case_1_min+10 case_2_max = case_1_max+10 corrected_MT_cases = [] for MT in MT_cases: if (MT<=case_1_max): # star 1 is donor if (MT<case_1_min): # replace MT case corrected_MT_cases.append(case_1_min) else: corrected_MT_cases.append(MT) if (MT>case_1_min): # update earliest possible MT case case_1_min = MT elif (MT<=case_2_max): # star 2 is donor if (MT<case_2_min): # replace MT case corrected_MT_cases.append(case_2_min) else: corrected_MT_cases.append(MT) if (MT>case_2_min): # update earliest possible MT case case_2_min = MT else: # unknown donor Pwarn("MT case with unknown donor: {}".format(MT),\ "EvolutionWarning") corrected_MT_cases.append(MT) else: corrected_MT_cases = MT_cases.copy() return cumulative_mass_transfer_string( cumulative_mass_transfer_numeric(corrected_MT_cases) )
[docs] def get_i_He_depl(history): """Get the index of He depletion in the history Arguments --------- history: numpy-array Stellar history from MESA Return ------ int index of He depletion (-1 if no He depletion is found) """ if (('surface_h1' in history.dtype.names) and ('center_h1' in history.dtype.names) and ('center_he4' in history.dtype.names) and ('center_c12' in history.dtype.names) and ('log_LH' in history.dtype.names) and ('log_LHe' in history.dtype.names) and ('log_Lnuc' in history.dtype.names)): n_history = len(history['center_he4']) for i in range(n_history): state = infer_star_state(surface_h1=history['surface_h1'][i], center_h1=history['center_h1'][i], center_he4=history['center_he4'][i], center_c12=history['center_c12'][i], log_LH=history['log_LH'][i], log_LHe=history['log_LHe'][i], log_Lnuc=history['log_Lnuc'][i], star_CO=False) if "Central_He_depleted" in state: return i return -1
[docs] def calculate_Patton20_values_at_He_depl(star): """Calculate the carbon core mass and abundance very close to ignition. This is important for using the Patton+2020 SN prescription Arguments ---------- star: SingleStar object holding the history of its attributes. Returns ------- None It updates the following values in the star object co_core_mass_at_He_depletion: float co_core_mass at He core depletion (almost at the same time as carbon core ignition) avg_c_in_c_core_at_He_depletion : float avg carbon abundance inside CO_core_mass at He core depletion (almost at the same time as carbon core ignition) """ co_core_mass_at_He_depletion = None avg_c_in_c_core_at_He_depletion = None if star.state_history is not None: if ("H-rich_Central_He_depleted" in star.state_history): i_He_depl = np.argmax( np.array(star.state_history) == "H-rich_Central_He_depleted") co_core_mass_at_He_depletion = star.co_core_mass_history[i_He_depl] avg_c_in_c_core_at_He_depletion = star.avg_c_in_c_core_history[ i_He_depl] elif ("stripped_He_Central_He_depleted" in star.state_history): i_He_depl = np.argmax(np.array(star.state_history) == "stripped_He_Central_He_depleted") co_core_mass_at_He_depletion = star.co_core_mass_history[i_He_depl] avg_c_in_c_core_at_He_depletion = star.avg_c_in_c_core_history[ i_He_depl] else: co_core_mass_at_He_depletion = None avg_c_in_c_core_at_He_depletion = None # return co_core_mass_at_He_depletion, avg_c_in_c_core_at_He_depletion star.co_core_mass_at_He_depletion = co_core_mass_at_He_depletion star.avg_c_in_c_core_at_He_depletion = avg_c_in_c_core_at_He_depletion
[docs] def CEE_parameters_from_core_abundance_thresholds(star, verbose=False): """Find the envelope mass for different core boundary abundance thresholds. The results are meant to be used in collabration with the respective `lambda_CE_*cent`, `lambda_CE_pure_He_star_10cent`. Arguments ---------- star: SingleStar object holding the history of its attributes. Returns ------- None It updates the following values in the star object m_core_CE_1cent: float core mass (using an element abundance of 1%) m_core_CE_10cent: float core mass (using an element abundance of 10%) m_core_CE_30cent: float core mass (using an element abundance of 30%) m_core_CE_pure_He_star_10cent: float core mass (using an element abundance of 10% in He) r_core_CE_1cent: float core radius (using an element abundance of 1%) r_core_CE_10cent: float core radius (using an element abundance of 10%) r_core_CE_30cent: float core radius (using an element abundance of 30%) r_core_CE_pure_He_star_10cent: float core radius (using an element abundance of 10% in He) lambda_CE_1cent: float lambda value (using an element abundance of 1%) lambda_CE_10cent: float lambda value (using an element abundance of 10%) lambda_CE_30cent: float lambda value (using an element abundance of 30%) lambda_CE_pure_He_star_10cent: float lambda value (using an element abundance of 10% in He) """ mass = star.mass radius = 10.**star.log_R star_state = star.state m_core_CE_1cent = 0.0 m_core_CE_10cent = 0.0 m_core_CE_30cent = 0.0 m_core_CE_pure_He_star_10cent = 0.0 r_core_CE_1cent = 0.0 r_core_CE_10cent = 0.0 r_core_CE_30cent = 0.0 r_core_CE_pure_He_star_10cent = 0.0 profile = star.profile # final profile of a star in a MESA run if profile is not None and isinstance(profile, np.ndarray): mass_prof = profile["mass"] m_core = 0.0 r_core = 0.0 if "H-rich" in star_state: for element_frac in [0.01, 0.1, 0.3]: ind_core = calculate_core_boundary( mass_prof, star_state, profile, core_element_fraction_definition=element_frac) lambda_CE, m_core, r_core = calculate_lambda_from_profile( profile=profile, donor_star_state=star_state, m1_i=mass, radius1=radius, core_element_fraction_definition=element_frac, ind_core=ind_core, verbose=verbose) if element_frac == 0.01: m_core_CE_1cent = m_core r_core_CE_1cent = r_core lambda_CE_1cent = lambda_CE elif element_frac == 0.1: m_core_CE_10cent = m_core r_core_CE_10cent = r_core lambda_CE_10cent = lambda_CE if element_frac == 0.3: m_core_CE_30cent = m_core r_core_CE_30cent = r_core lambda_CE_30cent = lambda_CE # calculate also potential CO core, for consistency for element_frac in [0.1]: ind_core = calculate_core_boundary( mass_prof, star_state, profile, core_element_fraction_definition=element_frac, CO_core_in_Hrich_star=True) lambda_CE, m_core, r_core = calculate_lambda_from_profile( profile=profile, donor_star_state=star_state, m1_i=mass, radius1=radius, core_element_fraction_definition=element_frac, ind_core=ind_core, CO_core_in_Hrich_star=True, verbose=verbose) m_core_CE_pure_He_star_10cent = m_core r_core_CE_pure_He_star_10cent = r_core lambda_CE_pure_He_star_10cent = lambda_CE elif "stripped_He" in star_state: for element_frac in [0.1]: ind_core = calculate_core_boundary( mass_prof, star_state, profile, core_element_fraction_definition=element_frac) lambda_CE, m_core, r_core = calculate_lambda_from_profile( profile=profile, donor_star_state=star_state, m1_i=mass, radius1=radius, core_element_fraction_definition=element_frac, ind_core=ind_core, verbose=verbose) m_core_CE_pure_He_star_10cent = m_core m_core_CE_1cent = mass m_core_CE_10cent = mass m_core_CE_30cent = mass r_core_CE_pure_He_star_10cent = r_core r_core_CE_1cent = radius r_core_CE_10cent = radius r_core_CE_30cent = radius lambda_CE_pure_He_star_10cent = lambda_CE lambda_CE_1cent = np.nan lambda_CE_10cent = np.nan lambda_CE_30cent = np.nan else: # CO-object or undetermined_evolutionary_state? m_core_CE_pure_He_star_10cent = np.nan m_core_CE_1cent = np.nan m_core_CE_10cent = np.nan m_core_CE_30cent = np.nan r_core_CE_pure_He_star_10cent = np.nan r_core_CE_1cent = np.nan r_core_CE_10cent = np.nan r_core_CE_30cent = np.nan lambda_CE_1cent = np.nan lambda_CE_10cent = np.nan lambda_CE_30cent = np.nan lambda_CE_pure_He_star_10cent = np.nan if verbose: print('star state {} is not what expected during the ' 'CEE_parameters_from_core_abundance_thresholds.'. format(star_state)) else: # no profile m_core_CE_pure_He_star_10cent = np.nan m_core_CE_1cent = np.nan m_core_CE_10cent = np.nan m_core_CE_30cent = np.nan r_core_CE_pure_He_star_10cent = np.nan r_core_CE_1cent = np.nan r_core_CE_10cent = np.nan r_core_CE_30cent = np.nan lambda_CE_1cent = np.nan lambda_CE_10cent = np.nan lambda_CE_30cent = np.nan lambda_CE_pure_He_star_10cent = np.nan if verbose: print("star_state", star_state) print("m_core_CE_1cent,m_core_CE_10cent,m_core_CE_30cent," "m_core_CE_pure_He_star_10cent", m_core_CE_1cent, m_core_CE_10cent, m_core_CE_30cent, m_core_CE_pure_He_star_10cent) print("r_core_CE_1cent,r_core_CE_10cent,r_core_CE_30cent," "r_core_CE_pure_He_star_10cent", r_core_CE_1cent, r_core_CE_10cent, r_core_CE_30cent, r_core_CE_pure_He_star_10cent) print("lambda_CE_1cent,lambda_CE_10cent,lambda_CE_30cent," "lambda_CE_pure_He_star_10cent", lambda_CE_1cent, lambda_CE_10cent, lambda_CE_30cent, lambda_CE_pure_He_star_10cent) star.m_core_CE_1cent = m_core_CE_1cent star.m_core_CE_10cent = m_core_CE_10cent star.m_core_CE_30cent = m_core_CE_30cent star.m_core_CE_pure_He_star_10cent = m_core_CE_pure_He_star_10cent star.r_core_CE_1cent = r_core_CE_1cent star.r_core_CE_10cent = r_core_CE_10cent star.r_core_CE_30cent = r_core_CE_30cent star.r_core_CE_pure_He_star_10cent = r_core_CE_pure_He_star_10cent star.lambda_CE_1cent = lambda_CE_1cent star.lambda_CE_10cent = lambda_CE_10cent star.lambda_CE_30cent = lambda_CE_30cent star.lambda_CE_pure_He_star_10cent = lambda_CE_pure_He_star_10cent
[docs] def initialize_empty_array(arr): """Initialize an empty record array with NaNs and empty strings.""" res = arr.copy() for colname in res.dtype.names: if np.issubsctype(res[colname], float): res[colname] = np.nan if np.issubsctype(res[colname], str): res[colname] = np.nan #TODO: handle h5py.string_dtype() return res
[docs] def calculate_core_boundary(donor_mass, donor_star_state, profile, mc1_i=None, core_element_fraction_definition=None, CO_core_in_Hrich_star=False): """Calculate the shell where the core is - envelope boundary. Parameters ---------- donor_mass : array Profile column of enclosed mass of the star. donor_star_state : string The POSYDON evolutionary state of the donor star profile : numpy.array Donor's star profile from MESA mc1_i : float core mass and total mass of the donor star. core_element_fraction_definition : float The mass fraction of the envelope abundant chemical element at the core-envelope boundary to derive the donor's core mass from the profile CO_core_in_Hrich_star: Bool This should be true if we want to calculate the boundary of CO core in a H-rich star (and not of the helium core). Returns ------- ind_core : int The value of the cell position of the core - envelope boundary, at the donor's MESA profile (for a profile that starts from the surface). More specifically, it returns the index of the first cell (starting from the surface), that the elements conditions for the core are met. - Returns 0 for a star that is all core - Returns -1 for a star that is all envelope. """ # the threshold of the elements that need to be high in the core core_element_high_fraction_definition = 0.1 # ENHANCEMENT: this list needs to be imported from e.g. flow_chart.py STAR_STATES_H_RICH = [ "H-rich_Core_H_burning", "H-rich_Shell_H_burning", "H-rich_Core_He_burning", "H-rich_Central_He_depleted", "H-rich_Core_C_burning", "H-rich_Central_C_depletion", "H-rich_non_burning", "accreted_He_Core_H_burning", "accreted_He_non_burning" ] # ENHANCEMENT: this list needs to be imported from e.g. flow_chart.py STAR_STATE_He = [ 'accreted_He_Core_He_burning', 'stripped_He_Core_He_burning', 'stripped_He_Central_He_depleted', 'stripped_He_Central_C_depletion', 'stripped_He_non_burning' ] if core_element_fraction_definition is not None: if ((donor_star_state in STAR_STATES_H_RICH) and ('x_mass_fraction_H' in profile.dtype.names) and ('y_mass_fraction_He' in profile.dtype.names) and ('z_mass_fraction_metals' in profile.dtype.names)): if not CO_core_in_Hrich_star: element = profile['x_mass_fraction_H'] element_core = np.add(profile['y_mass_fraction_He'], profile['z_mass_fraction_metals']) else: element = np.add(profile['x_mass_fraction_H'], profile['y_mass_fraction_He']) element_core = profile['z_mass_fraction_metals'] elif (donor_star_state in STAR_STATE_He and 'x_mass_fraction_H' in profile.dtype.names and 'y_mass_fraction_He' in profile.dtype.names and 'z_mass_fraction_metals' in profile.dtype.names): # Recalculate the core from a chemical mass fraction threshold. # Here we assume Xelement=0.1 is the default MESA core definition. # element = profile['y_mass_fraction_He'] element = np.add(profile['x_mass_fraction_H'], profile['y_mass_fraction_He']) element_core = profile['z_mass_fraction_metals'] # ind_core=np.argmax(element[::-1]>=core_element_fraction_definition) else: ind_core = -1 Pwarn("Stellar profile columns were not enough to calculate the"+\ " core-envelope boundaries for CE, entire star is now"+\ " considered an envelope", "ApproximationWarning") return ind_core # starting from the surface, both conditions become True when element # (of which the envelope is rich) decreases and the element_core which # is in the core increases. both_conditions = ( element <= core_element_fraction_definition).__and__( element_core >= core_element_high_fraction_definition) if not np.any(both_conditions): # the whole star is an envelope, from surface towards the core # the "both_conditions" never becomes True ind_core = -1 else: # starting from the surface we find the first time that we get True ind_core = np.argmax(both_conditions) # This includes the case that the whole star is an "core", as it # will find only "True" in both_conditions and will return # ind_core=0 (first, surface cell for a MESA profile) elif (mc1_i is not None): # calculate the cell position of the core boundary. In principle you # calculate index of the first time the inequality becomes False (your # lowest value) for your MESA profile, so starting from the surface. ind_core = np.argmin(donor_mass >= mc1_i) else: raise ValueError("Not possible to calculate the core boundary of the donor in CE") return ind_core
[docs] def period_evol_wind_loss(M_current, M_init, Mcomp, P_init): """Calculate analytically the period widening due to wind mass loss [1]_. Parameters ---------- M_current : float Current mass of the mass losing star (Msun) M_init : float Initial mass of the mass losing star when the calculation starts (Msun) Mcomp : float (Constant) mass of the companion star (Msun) P_init : float Initial binary period when the calculation starts (days) Returns ------- float Current binary period in days References ---------- .. [1] Tauris, T. M., & van den Heuvel, E. 2006, Compact stellar X-ray sources, 1, 623 """ log10P = (-2.*np.log10(M_current+Mcomp) + 2.*np.log10(M_init+Mcomp) + np.log10(P_init)) return 10.0**log10P
[docs] def separation_evol_wind_loss(M_current, M_init, Mcomp, A_init): """Calculate analytically the separation widening due to wind mass loss [1]_. Parameters ---------- M_current : float Current mass of the mass losing star (Msun) M_init : float Initial mass of the mass losing star when the calculation starts (Msun) Mcomp : float (Constant) mass of the companion star (Msun) A_init : float Initial binary separation when the calculation starts (Rsun) Returns ------- float Current binary separation in Rsun References ---------- .. [1] Tauris, T. M., & van den Heuvel, E. 2006, Compact stellar X-ray sources, 1, 623. """ log10A = (-np.log10(M_current+Mcomp) + np.log10(M_init+Mcomp) + np.log10(A_init)) return 10.0**log10A
[docs] def period_change_stable_MT(period_i, Mdon_i, Mdon_f, Macc_i, alpha=0.0, beta=0.0): """Change the binary period after a semi-detached stable MT phase. Calculated in Sorensen, Fragos et al. 2017A&A...597A..12S. Note that MT efficiencies are assumed constant (i.e., not time-dependent) throughout the MT phase. Parameters ---------- period_i : float Initial period Mdon_i: float Initial donor mass Mdon_f: float Final donor mass (should be in the same unit's of Mdon_i) Mdon_i: float Initial accretor's mass (should be in the same unit's of Mdon_i) alpha : float [0-1] Fraction of DM_don (= Mdon_i - Mdon_f) from the donor, lost from the donor's vicinity beta : float [0-1] Fraction of Mdot from the L1 point (= (1-alpha)*DM_don), lost from the accretor's vicinity. The final accreted rate is (1-beta)(1-alpha)*DM_don Returns ------- period_f : float final period at the end of stable MT, in the same units as period_i """ DM_don = Mdon_i - Mdon_f # mass lost from donor (>0) if DM_don < 0: raise ValueError("Donor gains mass from {} to {}".format(Mdon_i, Mdon_f)) Macc_f = Macc_i + (1.-beta)*(1.-alpha)*DM_don if alpha < 0.0 or beta < 0.0 or alpha > 1.0 or beta > 1.0: raise ValueError("In period_change_stable_MT, mass transfer " "efficiencies, alpha, beta: {}, {} are not in the " "[0-1] range.".format(alpha, beta)) if beta != 1.0: # Eq. 7 of Sorensen+Fragos et al. 2017 period_f = (period_i * (Mdon_f/Mdon_i)**(3.*(alpha-1.)) * (Macc_f/Macc_i)**(3./(beta-1.)) * ((Mdon_i + Macc_i)/(Mdon_f + Macc_f))**(2.)) else: # fully non-conservative MT. Eq. 8 of Sorensen+Fragos et al. 2017, # were we already assumed beta=1 period_f = (period_i * (Mdon_f/Mdon_i)**(3.*(alpha-1.)) * np.exp(3.*(1.-alpha)*(Mdon_f - Mdon_i)/Macc_f) * ((Mdon_i + Macc_i)/(Mdon_f + Macc_f))**(2.)) return period_f
[docs] def linear_interpolation_between_two_cells(array_y, array_x, x_target, top=None, bot=None, verbose=False): """Interpolate quantities between two star profile shells.""" if ((top is None or np.isnan(top)) and (bot is None or np.isnan(bot))): top = np.argmax(array_x >= x_target) bot = top - 1 elif bot is None or np.isnan(bot): bot = top - 1 elif top is None or np.isnan(top): top = bot + 1 if top >= len(array_y): Pwarn("top={} is too large, use last element in array_y".format(top), "ReplaceValueWarning") top = len(array_y)-1 if top >= len(array_x): Pwarn("array_x too short, use y at top={}".format(top), "InterpolationWarning") return array_y[top] if bot < 0: Pwarn("bot={} is too small, use first element".format(bot), "ReplaceValueWarning") bot = 0 if top == bot: y_target = array_y[top] Pwarn("linear interpolation occured between the same point: x_target," " top, bot, len(array_x), y_target = {}, {}, {}, {}, {}".format(\ x_target, top, bot, len(array_x), y_target), "InterpolationWarning") elif bot > top: y_target = array_y[top] Pwarn("bot={} is too large: use y at top={}".format(bot, top), "InterpolationWarning") else: x_top = array_x[top] x_bot = array_x[bot] y_top = array_y[top] y_bot = array_y[bot] slope = (y_top - y_bot) / (x_top - x_bot) const = (y_top*x_bot - y_bot*x_top) / (x_top - x_bot) y_target = slope * x_target - const if verbose: print("linear interpolation") print("x_target, top, bot, len(array_x)", x_target, top, bot, len(array_x)) print("x_top, x_bot, y_top, y_bot, y_target", x_top, x_bot, y_top, y_bot, y_target) return y_target
[docs] def calculate_lambda_from_profile( profile, donor_star_state, m1_i=np.nan, radius1=np.nan, common_envelope_option_for_lambda=DEFAULT_CE_OPTION_FOR_LAMBDA, core_element_fraction_definition=0.1, ind_core=None, common_envelope_alpha_thermal=1.0, tolerance=0.001, CO_core_in_Hrich_star=False, verbose=False): """Calculate common-enevelope lambda from the profile of a star. We also pass a more accurate calculation of the donor core mass for the purposes of common-envelope evolution. Parameters ---------- profile : numpy.array Donor's star profile from MESA donor_star_state : string The POSYDON evolutionary state of the donor star common_envelope_option_for_lambda : str Available options: * 'default_lambda': using for lambda the constant value of common_envelope_lambda_default parameter * 'lambda_from_profile_gravitational': calculating the lambda parameter from the donor's profile by using the gravitational binding energy from the surface to the core (needing "mass", and "radius" as columns in the profile) * 'lambda_from_profile_gravitational_plus_internal': as above but taking into account a factor of common_envelope_alpha_thermal * internal energy too in the binding energy (needing also "energy" as column in the profile) * 'lambda_from_profile_gravitational_plus_internal_minus_recombination' as above but not taking into account the recombination energy in the internal energy (needing also "y_mass_fraction_He", "x_mass_fraction_H" "neutral_fraction_H", "neutral_fraction_He", and "avg_charge_He" as column in the profile) core_element_fraction_definition : float The mass fraction of the envelope abundant chemical element at the core-envelope boundary to derive the donor's core mass from the profile. ind_core : int The value of the cell position of the core - envelope boundary, at the donor's MESA profile (for a profile that starts from the surface). More specifically, it returns the index of the first cell (starting from the surface), that the elements conditions for the core are met. It is 0 for a star that is all core and -1 for a star that is all envelope. If it is not given (None), it will be calculated inside the function. common_envelope_alpha_thermal : float Used and explained depending on the common_envelope_option_for_lambda option above. tolerance : float The tolerance of numerical difference in two floats when comparing and testing results. CO_core_in_Hrich_star: Bool This should be true if we want to calculate the boundary of CO core in a H-rich star (and not of the helium core). verbose : bool In case we want information about the CEE. Returns ------- lambda_CE: float lambda_CE for the envelope of the donor in CEE, calculated from profile mc1_i: float More accurate calculation of the donor core mass for the purposes of CEE. rc1_i: float More accurate calculation of the donor core radius for the purposes of CEE. """ # get mass and radius and dm from profile donor_mass, donor_radius, donor_dm = get_mass_radius_dm_from_profile( profile, m1_i, radius1, tolerance) # if np.isnan(m1_i) or m1_i is None or np.isnan(radius1) or radius1 is None m1_i = donor_mass[0] radius1 = donor_radius[0] specific_internal_energy = get_internal_energy_from_profile( common_envelope_option_for_lambda, profile, tolerance) if ind_core is None: # To be used in a MESA profile (so one that starts from the surface) ind_core = calculate_core_boundary(donor_mass, donor_star_state, profile, None, core_element_fraction_definition, CO_core_in_Hrich_star) if ind_core == 0: # all star is a core, immediate successful ejection Ebind_i = 0.0 lambda_CE = np.nan mc1_i = m1_i rc1_i = radius1 else: if ind_core == -1: # all star is an envelope, calculate for whole star Ebind_i = calculate_binding_energy( donor_mass, donor_radius, donor_dm, specific_internal_energy, len(donor_mass), common_envelope_alpha_thermal, verbose) mc1_i = 0.0 rc1_i = 0.0 else: if "H-rich" in donor_star_state: if not CO_core_in_Hrich_star: elem_prof = profile["x_mass_fraction_H"] else: elem_prof = profile["y_mass_fraction_He"] elif "stripped_He" in donor_star_state: elem_prof = profile["y_mass_fraction_He"] else: raise ValueError("state {} not supported in CEE"\ .format(donor_star_state)) mc1_i = linear_interpolation_between_two_cells( donor_mass, elem_prof, core_element_fraction_definition, ind_core, ind_core-1, verbose) rc1_i = linear_interpolation_between_two_cells( donor_radius, elem_prof, core_element_fraction_definition, ind_core, ind_core-1, verbose) # linear interpolation Ebind_i_top = calculate_binding_energy( donor_mass, donor_radius, donor_dm, specific_internal_energy, ind_core, common_envelope_alpha_thermal, verbose) Ebind_i_bot = calculate_binding_energy( donor_mass, donor_radius, donor_dm, specific_internal_energy, ind_core-1, common_envelope_alpha_thermal, verbose) if verbose: lambda_CE_top = (-const.standard_cgrav * m1_i * const.Msun * (m1_i - donor_mass[ind_core]) * const.Msun / (Ebind_i_top*radius1*const.Rsun)) lambda_CE_bot = (-const.standard_cgrav * m1_i * const.Msun * (m1_i - donor_mass[ind_core-1]) * const.Msun / (Ebind_i_bot*radius1*const.Rsun)) print("lambda_CE_top, lambda_CE_bot", lambda_CE_top, lambda_CE_bot) weight = ((core_element_fraction_definition-elem_prof[ind_core-1]) / (elem_prof[ind_core] - elem_prof[ind_core-1])) Ebind_i = Ebind_i_bot + weight*(Ebind_i_top - Ebind_i_bot) # lambda of the donor is calculated from the profile lambda_CE = (-const.standard_cgrav * m1_i*const.Msun * (m1_i - mc1_i)*const.Msun/(Ebind_i*radius1*const.Rsun)) if verbose: print("m1_i, radius1, len(profile) vs ind_core, mc1_i, rc1_i", m1_i, radius1, len(donor_mass), " vs ", ind_core, mc1_i, rc1_i) print("Ebind_i from profile ", Ebind_i) print("lambda_CE ", lambda_CE) if not (lambda_CE > -tolerance) and not np.isnan(lambda_CE): raise ValueError("lambda_CE has a negative value") return lambda_CE, mc1_i, rc1_i
[docs] def get_mass_radius_dm_from_profile(profile, m1_i=0.0, radius1=0.0, tolerance=0.001): """TODO: add summary. Reads and returns the profile columms of enclosed mass radius and mass per shell of the donor star from a MESA profile. Parameters ---------- m1_i : float m1_i is the value passed from the singlestar object, for testing purposes only radius1 : float radius1 is the value passed from the singlestar object, for testing purposes only profile : numpy.array Donor's star profile from MESA tolerance : float The tolerance of numerical difference in two floats when comparing and testing results. Returns ------- donor_mass : array Profile column of enclosed mass of the star. donor_radius : array Profile column of the radius the star. donor_dm : array Profile mass per shell of the star. """ if (("mass" in profile.dtype.names) and (("radius" in profile.dtype.names) or ("log_R" in profile.dtype.names))): donor_mass = profile["mass"] if ("radius" in profile.dtype.names): donor_radius = profile["radius"] else: #if ("log_R" in profile.dtype.names): donor_radius = 10**profile["log_R"] # checking if mass of profile agrees with the mass of the binary object if np.abs(donor_mass[0] - m1_i) > tolerance: Pwarn("Donor mass from the binary class object " "and the profile do not agree", "ClassificationWarning") # checking if radius of profile agrees with the radius of the binary if np.abs(donor_radius[0] - radius1) > tolerance: Pwarn("Donor radius from the binary class object " "and the profile do not agree", "ClassificationWarning") # MANOS: if dm exists as a column, else calculate it from mass column if "dm" in profile.dtype.names: donor_dm = profile["dm"] # dm in MESA is in cgs, not in MSsun units, so we transform it donor_dm = donor_dm / const.Msun else: donor_dm = np.concatenate((-1 * np.diff(donor_mass), [donor_mass[-1]])) else: raise ValueError("One or many of the mass and/or radius needed columns" " in the profile is not provided for the CEE") return donor_mass, donor_radius, donor_dm
[docs] def get_internal_energy_from_profile(common_envelope_option_for_lambda, profile, tolerance=0.001): """Calculate the specific internal energy per shell of the donor. Parameters ---------- common_envelope_option_for_lambda : str Available options: * 'default_lambda': using for lambda the constant value of common_envelope_lambda_default parameter * 'lambda_from_profile_gravitational': calculating the lambda parameter from the donor's profile by using the gravitational binding energy from the surface to the core (needing "mass", and "radius" as columns in the profile) * 'lambda_from_profile_gravitational_plus_internal': as above but taking into account a factor of common_envelope_alpha_thermal * internal energy too in the binding energy (needing also "energy" as column in the profile) * 'lambda_from_profile_gravitational_plus_internal_minus_recombination' as above but not taking into account the recombination energy in the internal energy (needing also "y_mass_fraction_He", "x_mass_fraction_H" "neutral_fraction_H", "neutral_fraction_He", and "avg_charge_He" as column in the profile) profile : numpy.array Donor's star profile from MESA tolerance : float The tolerance of numerical difference in two floats when comparing and testing results. Returns ------- specific_donor_internal_energy : array Value of the specific internal energy per shell of the donor """ if (common_envelope_option_for_lambda == "lambda_from_profile_gravitational"): # initiate specific internal energy as 0 specific_donor_internal_energy = profile["radius"] * 0.0 elif ((common_envelope_option_for_lambda != "lambda_from_profile_gravitational") and (not("energy" in profile.dtype.names))): Pwarn("Profile does not include internal energy -- " "proceeding with 'lambda_from_profile_gravitational'", "ApproximationWarning") # initiate specific internal energy as 0 specific_donor_internal_energy = profile["radius"] * 0.0 elif ((common_envelope_option_for_lambda == "lambda_from_profile_gravitational_plus_internal") and ("energy" in profile.dtype.names)): # specific internal energy - if we would have used the "total_energy" # it would include (internal+potential+kinetic+rotation) specific_donor_internal_energy = profile["energy"] if not (np.any(specific_donor_internal_energy > -tolerance)): raise ValueError("CEE problem calculating internal energy, " "giving negative values.") specific_donor_H2recomb_energy = calculate_H2recombination_energy( profile, tolerance) # we still need to subtract the H2 recombination energy which is # included in the "energy" column of the profile # internal_energy - H2 recombination energy per shell specific_donor_internal_energy = ( specific_donor_internal_energy - specific_donor_H2recomb_energy) if not (np.any(specific_donor_internal_energy > -tolerance)): raise ValueError( "CEE problem calculating recombination (and H2 recombination) " "energy, remaining internal energy giving negative values.") elif ((common_envelope_option_for_lambda == "lambda_from_profile_" "gravitational_plus_internal_minus_recombination") and ("energy" in profile.dtype.names)): # specific internal energy. If we have used the "total_energy" it would # include (internal+potential+kinetic+rotation) specific_donor_internal_energy = profile["energy"] if not (np.any(specific_donor_internal_energy > -tolerance)): raise ValueError("CEE problem calculating internal energy, " "giving negative values.") # we still need to subtract the H2 recombination energy which is # included in the "energy" column of the profile specific_donor_H2recomb_energy = calculate_H2recombination_energy( profile, tolerance) specific_donor_recomb_energy = calculate_recombination_energy( profile, tolerance) # internal_energy - recombination energy - H2 recombination energy per # shell (so I think it is left with thermal + radiation) specific_donor_internal_energy = ( specific_donor_internal_energy - specific_donor_recomb_energy - specific_donor_H2recomb_energy) if not (np.any(specific_donor_internal_energy > -tolerance)): raise ValueError( "CEE problem calculating recombination (and H2 recombination) " "energy, remaining internal energy giving negative values.") else: raise ValueError("unsupported: common_envelope_option_for_lambda = {}"\ .format(common_envelope_option_for_lambda)) return specific_donor_internal_energy
[docs] def calculate_H2recombination_energy(profile, tolerance=0.001): """Compute the recombination energy of H2 per shell in erg. Parameters ---------- profile : array Donor's star profile from MESA tolerance : float The tolerance of numerical difference in two floats when comparing and testing results. Returns ------- specific_donor_H2recomb_energy : array recombination energy of H2 per shell in ergs """ if "x_mass_fraction_H" not in profile.dtype.names: Pwarn("Profile does not include Hydrogen mass fraction " "calculate H2 recombination energy -- " "H2 recombination energy is assumed 0", "ApproximationWarning") specific_donor_H2recomb_energy = profile["radius"] * 0.0 else: # Dissociation energy [cm^1] from Cheng+2018: # https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.013001 specific_donor_H2recomb_energy = ( 35999.582894 * const.inversecm2erg / (2.0 * const.H_weight) * profile['x_mass_fraction_H'] * const.avo) # http://www.nat.vu.nl/~griessen/STofHinM/ChapIIHatomMoleculeGas.pdf if not (np.any(specific_donor_H2recomb_energy > -tolerance)): raise ValueError("CEE problem calculating H2 recombination energy, " "giving negative values") # return specific_donor_H2recomb_energy * const.ev2erg return specific_donor_H2recomb_energy
[docs] def calculate_recombination_energy(profile, tolerance=0.001): """Compute the recombination energy per shell in erg. Parameters ---------- profile : numpy.array Donor's star profile from MESA tolerance : float The tolerance of numerical difference in two floats when comparing and testing results. Returns ------- specific_donor_recomb_energy : array recombination energy per shell in ergs """ if (not(("y_mass_fraction_He" in profile.dtype.names) and ("x_mass_fraction_H" in profile.dtype.names) and ("neutral_fraction_H" in profile.dtype.names) and ("neutral_fraction_He" in profile.dtype.names) and ("avg_charge_He" in profile.dtype.names))): Pwarn("Profile does not include mass fractions and ionizations" " of elements to calculate recombination energy " "-- recombination energy is assumed 0", "ApproximationWarning") specific_donor_recomb_energy = profile["radius"] * 0.0 else: # from MESA/binary/private/binary_ce.f90 frac_HI = profile["neutral_fraction_H"] for i in range(len(frac_HI)): # TODO: For some reason this is a bit > 1 in the outer envelope. # Maybe not important but better to solve it. frac_HI[i] = min(1., frac_HI[i]) frac_HII = 1.0 - frac_HI frac_HeI = profile["neutral_fraction_He"] avg_charge_He = profile["avg_charge_He"] for i in range(len(frac_HeI)): frac_HeI[i] = min(1., frac_HeI[i]) # knowing the frac_HeI and the avg_charge_He, # we can solve for frac_HeII and frac_HeIII avg_charge_He[i] = max(avg_charge_He[i], 0.0) frac_HeII = 2.0 - 2.0 * frac_HeI - avg_charge_He frac_HeIII = 1.0 - frac_HeII - frac_HeI specific_donor_recomb_energy = profile_recomb_energy( profile['x_mass_fraction_H'], profile['y_mass_fraction_He'], frac_HII, frac_HeII, frac_HeIII) if not (np.any(specific_donor_recomb_energy > -tolerance)): raise ValueError("CEE problem calculating recombination energy, " "giving negative values.") return specific_donor_recomb_energy
[docs] def profile_recomb_energy(x_mass_fraction_H, y_mass_fraction_He, frac_HII, frac_HeII, frac_HeIII): """Calculate the recombination energy per shell. Parameters ---------- x_mass_fraction_H : array Mass fraction of H per shell y_mass_fraction_He : array Mass fraction of He per shell. frac_HII : array Fraction of single ionized H per shell. frac_HeII : array Fraction of single ionized He per shell. frac_HeIII : array Fraction of double ionized He per shell. Returns ------- recomb_energy : 1D numpy.arrays recombination energy per shell in ergs (same dimension as x_mass_fraction_H and y_mass_fraction_He) """ recomb_energy = ( 54.4177650 * frac_HeIII / const.He_weight * y_mass_fraction_He * const.avo + 24.587388 * (frac_HeII + frac_HeIII) / const.He_weight * y_mass_fraction_He * const.avo + 13.598434 * frac_HII / const.H_weight * x_mass_fraction_H * const.avo) return recomb_energy * const.ev2erg
[docs] def calculate_binding_energy(donor_mass, donor_radius, donor_dm, specific_internal_energy, ind_core, factor_internal_energy, verbose, tolerance=0.001 ): """Calculate the total binding energy of the envelope of the star. Parameters ---------- donor_mass : array Enclosed mass coordinate of the donor star from its profile. donor_radius : array Radius coordinate of the donor star from its profile. donor_dm : array Mass enclosed per shell in the donor star's profile. specific_internal_energy : array Specific internal energy of the donor star. ind_core : int The value of the shell position of the core - envelope boundary, at the donor's MESA profile factor_internal_energy : float The factor to multiply with internal energy to be taken into account when we calculate the binding energy of the enevelope verbose : bool In case we want information about the CEE (the default is False). Returns ------- Ebind_i : float The total binding energy of the envelope of the star """ # Sum of gravitational energy from surface to core boundary Grav_energy = 0.0 # Sum of internal energy from surface to core boundary. This is 0 if # 'lambda_from_profile_gravitational' or (thermal+radiation+recombination) # for "lambda_from_profile_gravitational_plus_internal" or # (thermal+radiation) for # "lambda_from_profile_gravitational_plus_internal_minus_recombination" U_i = 0.0 # sum from surface to the core. Your core boundary is in element [ind_core] # in a normal MESA (and POSYDON) profile for i in range(ind_core): Grav_energy_of_cell = (-const.standard_cgrav * donor_mass[i] * const.Msun * donor_dm[i]*const.Msun / (donor_radius[i]*const.Rsun)) # integral of gravitational energy as we go deeper into the star Grav_energy = Grav_energy + Grav_energy_of_cell U_i = U_i + specific_internal_energy[i]*donor_dm[i]*const.Msun if Grav_energy > 0.0: if not (Grav_energy < tolerance): raise ValueError("CEE problem calculating gravitational energy, " "giving positive values.") # binding energy of the enevelope equals its gravitational energy + # an a_th fraction of its internal energy Ebind_i = Grav_energy + factor_internal_energy * U_i if not (Ebind_i < tolerance): Pwarn("Ebind_i of the envelope is positive", "EvolutionWarning") if verbose: print("integration of gravitational energy surface to core " "[Grav_energy], integration of internal energy surface to " "core [U_i] (0 if not taken into account) ", Grav_energy, U_i) print("Ebind = Grav_energy + factor_internal_energy*U_i : ", Ebind_i) return Ebind_i
[docs] def calculate_Mejected_for_integrated_binding_energy(profile, Ebind_threshold, mc1_i, rc1_i, m1_i = 0.0, radius1 = 0.0, factor_internal_energy=1.0,tolerance=0.001 ): """Calculate the mass lost from the envelope for an energy budget of Ebind_threshold Parameters ---------- profile : numpy.array Donor's star profile from MESA Ebind_threshold : float Orbital energy used from the spiral in to partial unbind the envelope. Positive We integrate from surface to calcualte the partial loss of mass during CE that merges. factor_internal_energy : float The factor to multiply with internal energy to be taken into account when we calculate the binding energy of the enevelope verbose : bool In case we want information about the CEE (the default is False). Returns ------- Ebind_i : float The total binding energy of the envelope of the star """ donor_mass, donor_radius, donor_dm = get_mass_radius_dm_from_profile( profile, m1_i, radius1, tolerance) specific_internal_energy = get_internal_energy_from_profile( common_envelope_option_for_lambda = "lambda_from_profile_gravitational_plus_internal_minus_recombination", profile = profile, tolerance = tolerance) # Sum of gravitational energy from surface towards inside Grav_energy = 0.0 # Sum of internal energy from surface towards. U_energy = 0.0 # sum from surface to the core. Your threshold is in element [ind_threshold] # in a normal MESA (and POSYDON) profile i = 0 Ebind_so_far = 0.0 # the integration from surface going inwards of the binding energy (negative in principle) while (abs(Ebind_so_far) < Ebind_threshold) and (i<len(donor_mass)): Grav_energy_of_cell = (-const.standard_cgrav * donor_mass[i] * const.Msun * donor_dm[i]*const.Msun / (donor_radius[i]*const.Rsun)) # integral of gravitational energy as we go deeper into the star Grav_energy = Grav_energy + Grav_energy_of_cell U_energy = U_energy + specific_internal_energy[i]*donor_dm[i]*const.Msun Ebind_so_far = Grav_energy + factor_internal_energy * U_energy i=i+1 ind_threshold = i-1 if donor_mass[ind_threshold]< mc1_i or donor_radius[ind_threshold]<rc1_i: Pwarn("partial mass ejected is greater than the envelope mass", "EvolutionWarning") mass_threshold = mc1_i else: mass_threshold = donor_mass[ind_threshold] M_ejected = donor_mass[0] - mass_threshold return M_ejected
[docs] class PchipInterpolator2: """Interpolation class.""" def __init__(self, *args, positive=False, **kwargs): """Initialize the interpolator.""" self.interpolator = PchipInterpolator(*args, **kwargs) self.positive = positive def __call__(self, *args, **kwargs): """Use the interpolator.""" result = self.interpolator(*args, **kwargs) if self.positive: result = np.maximum(result, 0.0) return result
[docs] def convert_metallicity_to_string(Z): """Check if metallicity is supported by POSYDON v2.""" # check supported metallicity valid_Z = [2e+00,1e+00,4.5e-01,2e-01,1e-01,1e-02,1e-03,1e-04] if not Z in valid_Z: raise ValueError(f'Metallicity {Z} not supported! Available metallicities in POSYDON v2 are {valid_Z}.') return f'{Z:1.1e}'.replace('.0','')
[docs] def rotate(axis, angle): """Generate rotation matrix to rotate a vector about an arbitrary axis by a given angle Parameters ---------- axis : array of length 3 Axis to rotate about angle : float Angle, in radians, through which to rotate about axis Returns ------- rotation_matrix : 3x3 array Array such that rotation_matrix.dot(vector) rotates vector about the given axis by the given angle """ if len(axis)!=3: raise ValueError("axis should be of dimension 3") # normalize the axis vector norm = np.linalg.norm(axis) if norm==0: raise ValueError("axis is a point") axis = axis / norm # calculate the cosine and sine of the angle cos_theta = np.cos(angle) sin_theta = np.sin(angle) # construct the rotation matrix rotation_matrix = np.array([ [cos_theta + axis[0]**2 * (1 - cos_theta), axis[0] * axis[1] * (1 - cos_theta) - axis[2] * sin_theta, axis[0] * axis[2] * (1 - cos_theta) + axis[1] * sin_theta], [axis[1] * axis[0] * (1 - cos_theta) + axis[2] * sin_theta, cos_theta + axis[1]**2 * (1 - cos_theta), axis[1] * axis[2] * (1 - cos_theta) - axis[0] * sin_theta], [axis[2] * axis[0] * (1 - cos_theta) - axis[1] * sin_theta, axis[2] * axis[1] * (1 - cos_theta) + axis[0] * sin_theta, cos_theta + axis[2]**2 * (1 - cos_theta)] ]) return rotation_matrix