"""Module defining the PSyGrid, the main grid object of POSYDON.
I. CREATING A GRID
------------------
a) One-liner for creating a grid without loading it in memory:
mygrid = PSyGrid(verbose=True).create("mysimulations/", "mygrids/grid1.h5")
b) Create a grid and keep it for processing:
mygrid = PSyGrid()
mygrid.create("MESA_simulations/ZAMS_grid/", "stored_grids/ZAMS_grid.h5")
print(mygrid)
c) Store only metadata and initial/final values of runs:
mygrid = PSyGrid().create(in_dir_path, out_file_path, slim=True)
d) Various options (see definition of `create` and `GRIDPROPERTIES` for more):
mygrid = PSyGrid().create(in_dir_path, out_file_path,
overwrite=True,
warn="suppress",
max_number_of_runs=1000,
description="My 1000-run grid.")
NOTE: you can use a family of HDF5 files in case of file size restrictions.
For example, using `mygrid.h5.%d` for the path when creating/loading grids,
implies that split files will be `mygrid.h5.0`, `mygrid.h5.1`, and so on.
When overwriting the file, all the family is overwritten (effectively, the
files are emptied to avoid remainder split files from previous operations.)
e) The history/profile data can be downsampled to significantly reduce the size
of the grid. There are three downsampling procedures: one combining all data
from histories (binary / star 1 / star 2), and two for each star's profile.
The parameters of the downsampling of histories and profiles can be set via
the `GRIDPROPERTIES` dictionary (see below). For example, for history down-
sampling, you can set a tolerance level (between 0 and 1) which corresponds
to the maximum interpolation error tolerated with respect to the range of
the parameters:
history_DS_error = 0.01.
Columns to be ignored during the downsampling process are set using the
`history_DS_exclude` parameter. The corresponding parameters for profile
downsampling are `profile_DS_error` and `profile_DS_exclude`.
f) The input path can be a list of paths to indicate multiple folders with MESA
runs. Each of the paths can have wildcard characters to select subfolders or
even runs. E.g.:
- ["/grid_part1", "/grid_part2"]
- "/grid_part*"
- ["/grid/run1", "/grid/run2*"]
Note that all provided paths are searched recursively, allowing for hierar-
chical organizations of the MESA runs. For example, the parent folder could
look like this:
part_A/
run1/
run2/
part_B/
run3/
run4/
extra_run1/
extra_run2/
g) Only one run can be included for a specific set of initial parameters, being
identified by the folder name (excluding the `_grid_index*` part). E.g.,
reruns/m1_28_m2_11_initial_z_1.42e-02_initial_period_in_days_2_grid_index_0
will be preferred over
main/m1_28_m2_11_initial_z_1.42e-02_initial_period_in_days_2_grid_index_102
if the PSyGrid is created with the appropriate order of input paths:
mygrid = PSyGrid(["mygrid/main", "mygrid/reruns"])
The user is notified through warnings about such substitutions.
h) To include specific columns from MESA data files, set the grid properties of
the form `*_saved_columns`. For example,
grid.create("mygrid/", "mygrid.h5",
star1_history_saved_columns=["star_mass"])
By default, the provided columns will be added to the default list. In order
to select the exact set of columns, provide them in a tuple instead of list.
II. READING DATA FROM A GRID
----------------------------
mygrid = PSyGrid("thegrid.h5") # opens a stored grid
# Indexing...
t1 = mygrid[0]["binary_history"]["age"]
t3 = mygrid[0].binary_history["age"]
tenth_run = mygrid[10]
if tenth_run["binary_history"] is None:
print("No binary history in 10th run.")
Use `.close()` method to close the HDF5 file, or delete the grid variable. E.g.
mygrid.close()
or
del mygrid
III. OTHER FUNCTIONS
--------------------
a) Printing / logging summary:
print(mygrid)
with open("grid_summary.txt", "w") as f:
f.write(str(mygrid))
b) In `for` loop (`iter` and `next` are supported too):
for run in mygrid:
print(run)
c) Getting the number of runs:
n_runs = len(psygrid)
d) Checking if run index is defined in grid:
if (13 in grid):
print("My good luck lasted for", grid[13].binary_history.age[-1], "yr")
e) Getting list or set of runs (i.e., PSyGridView objects):
run_lst = list(psygrid)
run_set = set(psygrid)
f) Printing parameters used during the creation of the grid
print(psygrid.config)
WARNING: reducing reading times when accessing a PSyGrid
--------------------------------------------------------
When accessing a table in a specific run, e.g.,
mygrid[0].history1
or
for run in mygrid:
do_something_with(run.history1)
the table is loaded from the HDF5 file temporarily. This means that:
myrun.history1.star_mass + myrun.history1.star_mass
loads the table two times! To reduce reading times, store all the tables
that are going to be needed more than once in local variables:
myhistory1 = myrun.history1
myhistory1.star_mass + myhistory1.star_mass
"""
__authors__ = [
"Konstantinos Kovlakas <Konstantinos.Kovlakas@unige.ch>",
"Simone Bavera <Simone.Bavera@unige.ch>",
"Jeffrey Andrews <jeffrey.andrews@northwestern.edu>",
"Scott Coughlin <scottcoughlin2014@u.northwestern.edu>",
"Devina Misra <devina.misra@unige.ch>",
"Kyle Akira Rocha <kylerocha2024@u.northwestern.edu>",
"Matthias Kruckow <Matthias.Kruckow@unige.ch>",
]
import os
import glob
import json
import ast
import h5py
import numpy as np
import pandas as pd
import tqdm
from posydon.utils.common_functions import check_state_of_star_history_array
from posydon.grids.io import (GridReader, read_initial_values,
initial_values_from_dirname, EEP_FILE_EXTENSIONS)
from posydon.grids.termination_flags import (get_flags_from_MESA_run,
check_state_from_history,
get_flag_from_MESA_output,
infer_interpolation_class,
get_detected_initial_RLO,
get_nearest_known_initial_RLO)
from posydon.utils.configfile import ConfigFile
from posydon.utils.common_functions import (orbital_separation_from_period,
initialize_empty_array,
infer_star_state,
get_i_He_depl)
from posydon.utils.limits_thresholds import (THRESHOLD_CENTRAL_ABUNDANCE,
THRESHOLD_CENTRAL_ABUNDANCE_LOOSE_C
)
from posydon.utils.gridutils import (read_MESA_data_file, read_EEP_data_file,
add_field, join_lists, fix_He_core)
from posydon.visualization.plot2D import plot2D
from posydon.visualization.plot1D import plot1D
from posydon.grids.downsampling import TrackDownsampler
from posydon.grids.scrubbing import scrub, keep_after_RLO, keep_till_central_abundance_He_C
from posydon.utils.ignorereason import IgnoreReason
from posydon.utils.posydonwarning import (Pwarn, Catch_POSYDON_Warnings)
HDF5_MEMBER_SIZE = 2**31 - 1 # maximum HDF5 file size when splitting
H5_UNICODE_DTYPE = h5py.string_dtype() # dtype for unicode strings in the HDF5
H5_REC_STR_DTYPE = "S70" # string dtype when writing record arrays to HDF5
# valid keys in a run in the HDF5 file
VALID_KEYS = ["binary_history", "history1", "history2", "final_profile1",
"final_profile2", "initial_values", "final_values"]
# Acceptable values for `warn` argument of PSyGrid.create()
WARN_VALUES = ["end", "normal", "suppress"]
# Number of termination flags per run
N_FLAGS = 4
N_FLAGS_SINGLE = 2
TERMINATION_FLAG_COLUMNS = ["termination_flag_{}".format(i+1)
for i in range(N_FLAGS)]
TERMINATION_FLAG_COLUMNS_SINGLE = ["termination_flag_1", "termination_flag_3"]
# Default columns to be included from history and profile tables
DEFAULT_BINARY_HISTORY_COLS = [
"model_number", "age",
"star_1_mass", "star_2_mass",
"period_days", "binary_separation",
"lg_system_mdot_1", "lg_system_mdot_2",
"lg_wind_mdot_1", "lg_wind_mdot_2",
"lg_mstar_dot_1", "lg_mstar_dot_2",
"lg_mtransfer_rate", "xfer_fraction",
"rl_relative_overflow_1", "rl_relative_overflow_2",
"trap_radius", "acc_radius",
"t_sync_rad_1", "t_sync_conv_1", "t_sync_rad_2", "t_sync_conv_2"
]
DEFAULT_STAR_HISTORY_COLS = [
"he_core_mass", "c_core_mass", "o_core_mass",
"he_core_radius", "c_core_radius", "o_core_radius",
"center_h1", "center_he4", "center_c12", "center_n14", "center_o16",
"surface_h1", "surface_he4", "surface_c12", "surface_n14", "surface_o16",
"c12_c12", "center_gamma", "avg_c_in_c_core",
"surf_avg_omega", "surf_avg_omega_div_omega_crit",
"log_LH", "log_LHe", "log_LZ", "log_Lnuc", "log_Teff", "log_L", "log_R",
"log_center_T", "log_center_Rho",
"total_moment_of_inertia", "spin_parameter", "log_total_angular_momentum",
"conv_env_top_mass", "conv_env_bot_mass",
"conv_env_top_radius", "conv_env_bot_radius",
"conv_env_turnover_time_g", "conv_env_turnover_time_l_b",
"conv_env_turnover_time_l_t", "envelope_binding_energy",
"mass_conv_reg_fortides", "thickness_conv_reg_fortides",
"radius_conv_reg_fortides",
"lambda_CE_1cent", "lambda_CE_10cent", "lambda_CE_30cent",
"co_core_mass", "co_core_radius", "lambda_CE_pure_He_star_10cent",
"log_L_div_Ledd"
]
DEFAULT_SINGLE_HISTORY_COLS = (["model_number", "star_age", "star_mass"]
+ DEFAULT_STAR_HISTORY_COLS)
DEFAULT_EEP_HISTORY_COLS = ["star_age", "star_mass"]+DEFAULT_STAR_HISTORY_COLS
DEFAULT_PROFILE_COLS = [
"radius",
"mass",
"logRho",
"omega",
"energy",
"x_mass_fraction_H",
"y_mass_fraction_He",
"z_mass_fraction_metals",
"neutral_fraction_H",
"neutral_fraction_He",
"avg_charge_He",
]
EXTRA_STAR_COLS_AT_HE_DEPLETION = [
"avg_c_in_c_core", "co_core_mass"
]
# Default columns to exclude from computing history/profile downsampling
DEFAULT_HISTORY_DS_EXCLUDE = [
"model_number", # not physical
"age", # this is the independent variable in binary grids
"star_age" # this is the independent variable in single grids
]
DEFAULT_PROFILE_DS_EXCLUDE = [
"mass", # this is the independent variable in binary grids
"star_mass", # this is the independent variable in single grids
]
# to gain extra compression exclude the follwoing columns
# we support two versions:
# - SMALL: DS_err = 0.01 and exclude COLS+['surface_he4', 'surface_h1']
# - LITE: DS_err = 0.1 and exclude COLS
EXTRA_COLS_DS_EXCLUDE = [
'acc_radius', 'age', 'avg_charge_He', 'c12_c12', 'c_core_radius',
'center_c12', 'center_gamma', 'center_n14', 'center_o16', 'co_core_radius',
'conv_env_bot_mass', 'conv_env_bot_radius', 'conv_env_top_mass',
'conv_env_top_radius', 'conv_env_turnover_time_g',
'conv_env_turnover_time_l_b', 'conv_env_turnover_time_l_t', 'energy',
'envelope_binding_energy', 'he_core_radius', 'lambda_CE_10cent',
'lambda_CE_1cent', 'lambda_CE_30cent', 'lambda_CE_pure_He_star_10cent',
'lg_mstar_dot_1', 'lg_mstar_dot_2', 'lg_wind_mdot_1', 'lg_wind_mdot_2',
'log_LH', 'log_LHe', 'log_LZ', 'log_Lnuc', 'mass',
'mass_conv_reg_fortides', 'model_number', 'neutral_fraction_H',
'neutral_fraction_He', 'o_core_radius', 'radius_conv_reg_fortides',
'rl_relative_overflow_1', 'rl_relative_overflow_2', 'spin_parameter',
'star_age', 'star_mass', 'surf_avg_omega', 'surf_avg_omega_div_omega_crit',
'surface_c12', 'surface_h1', 'surface_he4', 'surface_n14', 'surface_o16',
't_sync_conv_1', 't_sync_conv_2', 't_sync_rad_1', 't_sync_rad_2',
'thickness_conv_reg_fortides', 'trap_radius', 'x_mass_fraction_H',
'xfer_fraction', 'y_mass_fraction_He', 'z_mass_fraction_metals',
'log_L_div_Ledd'
]
# Properties defining the PSyGrid creation. They're saved as metadata.
GRIDPROPERTIES = {
# file loading parameters
"description": "", # description text
"max_number_of_runs": None,
"format": "hdf5",
"compression": "gzip9",
# history downsampling parameters
"history_DS_error": None,
"history_DS_exclude": DEFAULT_HISTORY_DS_EXCLUDE,
# profile downsampling parameters
"profile_DS_error": None,
"profile_DS_interval": None,
"profile_DS_exclude": DEFAULT_PROFILE_DS_EXCLUDE,
# columns to pass to the PSyGrid
"star1_history_saved_columns": "minimum",
"star2_history_saved_columns": "minimum",
"binary_history_saved_columns": "minimum",
"star1_profile_saved_columns": "minimum",
"star2_profile_saved_columns": "minimum",
# Initial/Final value arrays
"initial_value_columns": None,
"final_value_columns": None,
# grid-specific arguments
"start_at_RLO": False,
"stop_before_carbon_depletion": False,
"binary": True,
"eep": None, # path to EEP files
"initial_RLO_fix": False,
"He_core_fix": True,
"accept_missing_profile": False,
}
[docs]
class PSyGrid:
"""Class handling a grid of MESA runs encoded in HDF5 format."""
def __init__(self, filepath=None, verbose=False):
"""Initialize the PSyGrid, and if `filename` is provided, open it.
Parameters
----------
verbose : bool
If `True`, the objects reports by printing to standard output.
path : str or None
If not None, it is the path of the HDF5 file to be loaded.
"""
self._reset() # initialize all except for `filepath` and `verbose`
self.filepath = filepath
self.verbose = verbose
if self.filepath is not None:
self.load(self.filepath)
def _reset(self):
"""(Re)set attributes to defaults, except `filename` and `verbose`."""
self.close()
self.hdf5 = None # h5py File handle if file is open
self.MESA_dirs = []
self.initial_values = None
self.final_values = None
self.config = ConfigFile()
self._make_compression_args()
self.n_runs = 0
self.eeps = None
def _make_compression_args(self):
if "compression" not in self.config:
self.compression_args = {}
return
compression = self.config["compression"]
compression = "" if compression is None else compression.lower()
if compression == "":
compression_args = {}
elif compression == "lzf":
compression_args = {"compression": "lzf"}
elif compression.startswith("gzip"):
if compression == "gzip":
compression_args = {"compression": "gzip"}
else:
if len(compression) > 5 or not compression[4].isdigit():
raise ValueError("GZIP compression level must be 0-9.")
compression_level = int(compression[4])
compression_args = {"compression": "gzip",
"compression_opts": compression_level}
else:
raise ValueError("Unknown compression `{}`.".format(compression))
self.compression_args = compression_args
def _discover_eeps(self, path):
self.eeps = {}
for extension in EEP_FILE_EXTENSIONS:
searchfor = os.path.join(path, "*" + extension)
for filename in glob.glob(searchfor):
# note that this is consistent with additional `.gz` extension
identifier = os.path.basename(filename.split(extension)[-2])
assert identifier not in self.eeps
self.eeps[identifier] = filename
if len(self.eeps) == 0:
self.eeps = None
def _say(self, something):
if self.verbose:
print(something, flush=True)
[docs]
def generate_config(self, **grid_kwargs):
"""Store the grid's configuration in a ConfigFile object."""
self.config = ConfigFile()
for key in grid_kwargs:
if key not in GRIDPROPERTIES:
raise ValueError("`{}` is not a valid parameter name.".
format(key))
new_dict = {}
for varname in GRIDPROPERTIES:
default_value = GRIDPROPERTIES[varname]
new_dict[varname] = grid_kwargs.get(varname, default_value)
self.config.update(new_dict)
self._make_compression_args()
[docs]
def create(self, MESA_grid_path, psygrid_path=None, overwrite=False,
slim=False, warn="end", fmt="posydon", **grid_kwargs):
"""Create a new PSyGrid object from a MESA grid and save it on disk.
Parameters
----------
MESA_grid_path : str
The path of the top directory where the input grid is located.
psygrid_path : str
The path of the HDF5 file to be created (or overwritten). If not
provided, it is assumed that it was defined during initialization.
overwrite : bool
Whether to overwrite the HDF5 file if it already exists.
slim : bool
If `True`, only the metadata and initial/final values are stored.
warn : str
How warnings are handled. If "normal", then warnings are shown when
they occur. If "end", they are collected and shown at the end. If
"suppress", then warnings are not shown at all.
**grid_kwargs : dict
Configuration of the new grid, passed as ddditional arguments.
"""
self._reset()
if warn not in WARN_VALUES:
raise ValueError("`warn` must be in: {}".format(WARN_VALUES))
if psygrid_path is not None:
self.filepath = psygrid_path
if self.filepath is None:
ValueError("The path of the HDF5 file was not defined.")
# Create the output directory if it doesn't exist
dirpath = os.path.dirname(self.filepath)
if dirpath != "":
os.makedirs(dirpath, exist_ok=True)
# Create the configuration object from the keyword arguments
self.generate_config(**grid_kwargs)
# Create the PSyGrid HDF5 file. Handle warnings according to `warn`.
# if already exists, am I allowed to overwrite?
if not overwrite and os.path.exists(self.filepath):
raise Exception("File {} already exists.".format(self.filepath))
# open the HDF5 file and transcribe the grid
driver_args = {} if "%d" not in self.filepath else {
"driver": "family", "memb_size": HDF5_MEMBER_SIZE}
with h5py.File(self.filepath, "w", **driver_args) as hdf5:
if warn == "normal":
self._create_psygrid(MESA_grid_path,
hdf5=hdf5, slim=slim, fmt=fmt)
else:
with Catch_POSYDON_Warnings(record=True) as caught_warnings:
self._create_psygrid(MESA_grid_path,
hdf5=hdf5, slim=slim, fmt=fmt)
if warn == "suppress":
caught_warnings.reset_cache()
else:
# for consistency
assert warn == "end"
self.load()
def _create_psygrid(self, MESA_path, hdf5, slim=False, fmt="posydon"):
"""Generate a PSyGrid instance from a path to MESA data.
Parameters
----------
MESA_path : str
The path of the directory with the MESA runs.
overwrite : bool
Whether existing HDF5 file can be overwritten.
slim : bool
Whether to include runs' history/profile data in the HDF5 file.
"""
outpath = self.filepath
assert outpath is not None # for consistency - expected to be defined
binary_grid = self.config["binary"]
initial_RLO_fix = self.config["initial_RLO_fix"]
start_at_RLO = self.config["start_at_RLO"]
stop_before_carbon_depletion = self.config["stop_before_carbon_depletion"]
eep = self.config["eep"]
if eep is not None:
if binary_grid:
Pwarn("Selected EEPs, switching to single-star grid.",
"ReplaceValueWarning")
self.config["binary"] = True
binary_grid = True
self._discover_eeps(eep)
# prepare for loss-less compression
compression_args = self.compression_args
self._say("Reading input directory structure...")
grid = GridReader(MESA_path, fmt=fmt, binary=binary_grid,
verbose=self.verbose)
# Determine expected number of runs (may not be as many in the end)
N_runs = len(grid.runs)
if not self.config['max_number_of_runs'] is None:
N_runs = min(N_runs, self.config['max_number_of_runs'])
# Decide on the columns to be included
def decide_columns(key_in_config, defaults):
"""Get columns to be saved or `None` if setting is 'all')."""
inconfig = self.config[key_in_config]
if inconfig == "all":
return None
if inconfig == "minimum":
return defaults
if np.iterable(inconfig):
if isinstance(inconfig, tuple):
return list(inconfig)
return join_lists(defaults, inconfig)
raise Exception("{} setting not recognized.".format(key_in_config))
if binary_grid:
H1_DEFAULTS = DEFAULT_STAR_HISTORY_COLS
else:
if self.eeps is None:
H1_DEFAULTS = DEFAULT_SINGLE_HISTORY_COLS
else:
H1_DEFAULTS = DEFAULT_EEP_HISTORY_COLS
BH_columns = decide_columns("binary_history_saved_columns",
DEFAULT_BINARY_HISTORY_COLS)
H1_columns = decide_columns("star1_history_saved_columns",
H1_DEFAULTS)
H2_columns = decide_columns("star2_history_saved_columns",
DEFAULT_STAR_HISTORY_COLS)
P1_columns = decide_columns("star1_profile_saved_columns",
DEFAULT_PROFILE_COLS)
P2_columns = decide_columns("star2_profile_saved_columns",
DEFAULT_PROFILE_COLS)
self._say("Infering column names in history tables...")
all_history_columns = grid.infer_history_columns(
BH_columns, H1_columns, H2_columns)
if len(all_history_columns) == 0:
raise Exception("PSyGrid object cannot be created: "
"No history data in all runs.")
self._say("Preparing initial/final_values arrays.")
initial_value_columns = all_history_columns.copy()
termination_flag_columns = (TERMINATION_FLAG_COLUMNS
if binary_grid else
TERMINATION_FLAG_COLUMNS_SINGLE)
dtype_initial_values = (
[(col, 'f8') for col in initial_value_columns]
+ [(col, 'f8') for col in ["X", "Y", "Z"]]
)
# get extra columns at He depletion for final values
extra_final_values_cols = []
for starID in ["S1_", "S2_"]:
for col in all_history_columns:
if starID in col:
for extra_col in EXTRA_STAR_COLS_AT_HE_DEPLETION:
colname = starID + extra_col + "_at_He_depletion"
extra_final_values_cols.append((colname, 'f8'))
break
dtype_final_values = (
[(col, 'f8') for col in all_history_columns]
+ [(col, H5_UNICODE_DTYPE) for col in termination_flag_columns]
+ ([("interpolation_class", H5_UNICODE_DTYPE)]
if binary_grid else [])
+ extra_final_values_cols
)
self.initial_values = initialize_empty_array(
np.empty(N_runs, dtype=dtype_initial_values))
self.final_values = initialize_empty_array(
np.empty(N_runs, dtype=dtype_final_values))
# in case lists were used, get a proper `dtype` object
dtype_initial_values = self.initial_values.dtype
dtype_final_values = self.final_values.dtype
self._say('Loading MESA data...')
#this int array will store the run_index of the i-th run and will be
# -1 if the run is not included.
run_included_at = np.full(N_runs, -1, dtype=int)
run_index = 0
for i in tqdm.tqdm(range(N_runs)):
# Select the ith run
run = grid.runs[i]
ignore = IgnoreReason()
newTF1 = ''
self._say('Processing {}'.format(run.path))
# Restrict number of runs if limit is set inside config
if self.config['max_number_of_runs'] is not None:
if run_index == self.config['max_number_of_runs']:
self._say("Maximum number of runs reached.")
break
binary_history = read_MESA_data_file(run.binary_history_path,
BH_columns)
# if no binary history, ignore this run
if binary_grid and binary_history is None:
ignore.reason = "ignored_no_binary_history"
Pwarn("Ignored MESA run because of missing binary history in:"
" {}\n".format(run.path), "MissingFilesWarning")
if not initial_RLO_fix:
continue
if ignore:
history1 = None
elif self.eeps is None:
history1 = read_MESA_data_file(run.history1_path, H1_columns)
else:
try:
eep_path = self.eeps[os.path.basename(run.path)]
except KeyError:
Pwarn("No matching EEP file for `" + run.path +\
"`. Ignoring run.", "MissingFilesWarning")
continue
history1 = read_EEP_data_file(eep_path, H1_columns)
if self.config["He_core_fix"]:
history1 = fix_He_core(history1)
if not binary_grid and history1 is None:
Pwarn("Ignored MESA run because of missing history in:"
" {}\n".format(run.path), "MissingFilesWarning")
ignore.reason = "ignored_no_history1"
continue
if ignore:
history2 = None
else:
history2 = read_MESA_data_file(run.history2_path, H2_columns)
if self.config["He_core_fix"]:
history2 = fix_He_core(history2)
# get values at He depletion and add them to the final values
for starID in ["S1_", "S2_"]:
if starID == "S1_":
h = history1
elif starID == "S2_":
h = history2
else:
h = None
i_He_depl = -1
for col in EXTRA_STAR_COLS_AT_HE_DEPLETION:
fvcol = starID + col + "_at_He_depletion"
if fvcol in dtype_final_values.names:
if ((i_He_depl==-1) and (h is not None)):
i_He_depl = get_i_He_depl(h)
if ((h is not None) and (col in h.dtype.names) and
(i_He_depl>=0)):
self.final_values[i][fvcol] = h[col][i_He_depl]
else:
self.final_values[i][fvcol] = np.nan
# scrub histories (unless EEPs are selected or run is ignored)
if not ignore and self.eeps is None:
# read the model numbers and ages from the histories
colname = "model_number"
if history1 is not None:
if colname in H1_columns:
history1_mod = np.int_(history1[colname].copy())
else:
history1_mod = read_MESA_data_file(run.history1_path,
[colname])
if history1_mod is not None:
history1_mod = np.int_(history1_mod[colname])
if history1_mod is not None:
len_diff = len(history1)-len(history1_mod)
if len_diff<0: #shorten history1_mod
history1_mod = history1_mod[:len_diff]
Pwarn("Reduce mod in {}\n".format(run.history1_path),
"ReplaceValueWarning")
elif len_diff>0: #entend history1_mod
add_mod = np.full(len_diff,history1_mod[-1])
history1_mod = np.concatenate((history1_mod, add_mod))
Pwarn("Expand mod in {}\n".format(run.history1_path),
"ReplaceValueWarning")
else:
ignore.reason = "corrupted_history1"
if "star_age" in H1_columns:
history1_age = history1["star_age"].copy()
else:
history1_age = read_MESA_data_file(run.history1_path,
["star_age"])
if history1_age is not None:
history1_age = history1_age["star_age"]
if history1_age is not None:
len_diff = len(history1)-len(history1_age)
if len_diff<0: #shorten history1_age
history1_age = history1_age[:len_diff]
Pwarn("Reduce age in {}\n".format(run.history1_path),
"ReplaceValueWarning")
elif len_diff>0: #entend history1_age
add_age = np.full(len_diff,history1_age[-1])
history1_age = np.concatenate((history1_age, add_age))
Pwarn("Expand age in {}\n".format(run.history1_path),
"ReplaceValueWarning")
else:
ignore.reason = "corrupted_history1"
else:
history1_mod = None
history1_age = None
if history2 is not None:
if colname in H2_columns:
history2_mod = np.int_(history2[colname].copy())
else:
history2_mod = read_MESA_data_file(run.history2_path,
[colname])
if history2_mod is not None:
history2_mod = np.int_(history2_mod[colname])
if history2_mod is not None:
len_diff = len(history2)-len(history2_mod)
if len_diff<0: #shorten history2_mod
history2_mod = history2_mod[:len_diff]
Pwarn("Reduce mod in {}\n".format(run.history2_path),
"ReplaceValueWarning")
elif len_diff>0: #entend history2_mod
add_mod = np.full(len_diff,history2_mod[-1])
history2_mod = np.concatenate((history2_mod, add_mod))
Pwarn("Expand mod in {}\n".format(run.history2_path),
"ReplaceValueWarning")
else:
ignore.reason = "corrupted_history2"
if "star_age" in H2_columns:
history2_age = history2["star_age"].copy()
else:
history2_age = read_MESA_data_file(run.history2_path,
["star_age"])
if history2_age is not None:
history2_age = history2_age["star_age"]
if history2_age is not None:
len_diff = len(history2)-len(history2_age)
if len_diff<0: #shorten history2_age
history2_age = history2_age[:len_diff]
Pwarn("Reduce age in {}\n".format(run.history2_path),
"ReplaceValueWarning")
elif len_diff>0: #entend history2_age
add_age = np.full(len_diff,history2_age[-1])
history2_age = np.concatenate((history2_age, add_age))
Pwarn("Expand age in {}\n".format(run.history2_path),
"ReplaceValueWarning")
else:
ignore.reason = "corrupted_history2"
else:
history2_mod = None
history2_age = None
if binary_history is not None:
if colname in BH_columns:
binary_history_mod = np.int_(binary_history[colname].copy())
else:
binary_history_mod = read_MESA_data_file(
run.binary_history_path, [colname])
if binary_history_mod is not None:
binary_history_mod = np.int_(binary_history_mod[colname])
if binary_history_mod is not None:
len_diff = len(binary_history)-len(binary_history_mod)
if len_diff<0: #shorten binary_history_mod
binary_history_mod = binary_history_mod[:len_diff]
Pwarn("Reduce mod in {}\n".format(run.binary_history_path),
"ReplaceValueWarning")
elif len_diff>0: #entend binary_history_mod
add_mod = np.full(len_diff,binary_history_mod[-1])
binary_history_mod = np.concatenate((binary_history_mod, add_mod))
Pwarn("Expand mod in {}\n".format(run.binary_history_path),
"ReplaceValueWarning")
else:
ignore.reason = "corrupted_binary_history"
if "age" in BH_columns:
binary_history_age = binary_history["age"].copy()
else:
binary_history_age = read_MESA_data_file(
run.binary_history_path, ["age"])
if binary_history_age is not None:
binary_history_age = binary_history_age["age"]
if binary_history_age is not None:
len_diff = len(binary_history)-len(binary_history_age)
if len_diff<0: #shorten binary_history_age
binary_history_age = binary_history_age[:len_diff]
Pwarn("Reduce age in {}\n".format(run.binary_history_path),
"ReplaceValueWarning")
elif len_diff>0: #entend binary_history_age
add_age = np.full(len_diff,binary_history_age[-1])
binary_history_age = np.concatenate((binary_history_age, add_age))
Pwarn("Expand age in {}\n".format(run.binary_history_path),
"ReplaceValueWarning")
else:
ignore.reason = "corrupted_binary_history"
else:
binary_history_mod = None
binary_history_age = None
# scrub the histories
if binary_grid:
history1, history2, binary_history = scrub(
tables=[history1, history2, binary_history],
models=[history1_mod, history2_mod,
binary_history_mod],
ages=[history1_age, history2_age, binary_history_age]
)
else:
history1, history2, binary_history = scrub(
tables=[history1, None, None],
models=[history1_mod, None, None],
ages=[history1_age, None, None]
)
# if scubbing wiped all the binary history, discard run
if binary_history is not None:
binary_history_len = len(binary_history)
else:
binary_history_len = 0
if binary_grid and binary_history_len == 0:
ignore.reason = "ignored_scrubbed_history"
Pwarn("Ignored MESA run because of scrubbed binary"
" history in: {}\n".format(run.path),
"InappropriateValueWarning")
if not initial_RLO_fix:
continue
if history1 is not None:
history1_len = len(history1)
else:
history1_len = 0
if not binary_grid and history1_len == 0:
ignore.reason = "ignored_scrubbed_history"
Pwarn("Ignored MESA run because of scrubbed"
" history in: {}\n".format(run.path),
"InappropriateValueWarning")
continue
try: #get mass from binary history
init_mass_1 = float(binary_history["star_1_mass"][0])
except: #otherwise get it from directory name
params_from_path = initial_values_from_dirname(run.path)
init_mass_1 = float(params_from_path[0])
# check whether stop at He depletion is requested
if stop_before_carbon_depletion and init_mass_1>=100.0:
kept = keep_till_central_abundance_He_C(binary_history,
history1, history2, THRESHOLD_CENTRAL_ABUNDANCE,
THRESHOLD_CENTRAL_ABUNDANCE_LOOSE_C)
binary_history, history1, history2, newTF1 = kept
# check whether start at RLO is requested, and chop the history
if start_at_RLO:
kept = keep_after_RLO(binary_history, history1, history2)
if kept is None:
ignore.reason = "ignored_no_RLO"
if self.verbose:
self._say("Ignored MESA run because of no RLO"
" in: {}\n".format(run.path))
if not initial_RLO_fix:
# TODO: we may want to keep these systems for
# allowing rerun grids to inform the old grids that
# a system is not RLOing anymore!
continue
binary_history, history1, history2 = None, None, None
else:
binary_history, history1, history2 = kept
if ignore:
binary_history, history1, history2 = None, None, None
final_profile1, final_profile2 = None, None
else:
final_profile1 = read_MESA_data_file(
run.final_profile1_path, P1_columns)
final_profile2 = read_MESA_data_file(
run.final_profile2_path, P2_columns)
if not binary_grid and final_profile1 is None:
if self.config["accept_missing_profile"]:
Pwarn("Including MESA run despite the missing profile"
" in: {}\n".format(run.path),
"MissingFilesWarning")
else:
Pwarn("Ignored MESA run because of missing profile in:"
" {}\n".format(run.path), "MissingFilesWarning")
ignore.reason = "ignored_no_final_profile"
continue
if binary_history is not None:
if binary_history.shape == (): # if history is only one line
initial_BH = binary_history.copy()
final_BH = binary_history.copy()
else:
# disentagle arrays with `copy` because the LHSs may change
initial_BH = binary_history[0].copy()
final_BH = binary_history[-1].copy()
else:
initial_BH = None
final_BH = None
if history1 is not None:
if history1.shape == (): # if history is only one line
initial_H1 = history1.copy()
final_H1 = history1.copy()
else:
# disentagle arrays with `copy` because the LHSs may change
initial_H1 = history1[0].copy()
final_H1 = history1[-1].copy()
else:
initial_H1 = None
final_H1 = None
if history2 is not None:
if history2.shape == (): # if history is only one line
initial_H2 = history2.copy()
final_H2 = history2.copy()
else:
# disentagle arrays with `copy` because the LHSs may change
initial_H2 = history2[0].copy()
final_H2 = history2[-1].copy()
else:
initial_H2 = None
final_H2 = None
# get some initial values from the `binary_history.data` header
# if of course, no RLO fix is applied
if binary_grid and not (start_at_RLO or ignore):
# this is compatible with `.gz` files
bh_header = np.genfromtxt(run.binary_history_path,
skip_header=1,
max_rows=1, names=True)
can_compute_new_separation = True
if "star_1_mass" in dtype_initial_values.names:
init_mass_1 = bh_header["initial_don_mass"]
initial_BH["star_1_mass"] = init_mass_1
else:
can_compute_new_separation = False
if "star_2_mass" in dtype_initial_values.names:
init_mass_2 = bh_header["initial_acc_mass"]
initial_BH["star_2_mass"] = init_mass_2
else:
can_compute_new_separation = False
if "period_days" in dtype_initial_values.names:
init_period = bh_header["initial_period_days"]
initial_BH["period_days"] = init_period
else:
can_compute_new_separation = False
if ("binary_separation" in dtype_initial_values.names
and can_compute_new_separation):
init_separation = orbital_separation_from_period(
init_period, init_mass_1, init_mass_2)
initial_BH["binary_separation"] = init_separation
elif not binary_grid and not (start_at_RLO or ignore):
# use header to get initial mass in single-star grids
# this is compatible with `.gz` files
h1_header = np.genfromtxt(run.history1_path,
skip_header=1,
max_rows=1, names=True)
if "S1_star_mass" in dtype_initial_values.names:
init_mass_1 = h1_header["initial_m"]
initial_H1["star_mass"] = init_mass_1
# get some initial values from the `LOGS1/history.data` header
addX = "X" in dtype_initial_values.names
addY = "Y" in dtype_initial_values.names
addZ = "Z" in dtype_initial_values.names
if (addX or addY or addZ) and not ignore:
# read abundances from history1 if present, else history2
if history1 is not None:
read_from = run.history1_path
elif history2 is not None:
read_from = run.history2_path
else:
read_from = None
# if not star history file, NaN values
if read_from is None:
init_X, init_Y, init_Z = np.nan, np.nan, np.nan
# try to get metallicity from directory name
params_from_path = initial_values_from_dirname(run.path)
if (len(params_from_path)==4) or (len(params_from_path)==2):
init_Z = params_from_path[-1]
else:
star_header = np.genfromtxt(
read_from, skip_header=1, max_rows=1, names=True)
init_Z = star_header["initial_Z"]
init_Y = star_header["initial_Y"]
init_X = 1.0 - init_Z - init_Y
if binary_grid:
where_to_add = initial_BH
else:
where_to_add = initial_H1
if addZ:
where_to_add = add_field(where_to_add, [("Z", '<f8')])
where_to_add["Z"] = init_Z
if addY:
where_to_add = add_field(where_to_add, [("Y", '<f8')])
where_to_add["Y"] = init_Y
if addX:
where_to_add = add_field(where_to_add, [("X", '<f8')])
where_to_add["X"] = init_X
# set initial/final values
if initial_BH is not None:
for col in initial_BH.dtype.names:
self.initial_values[i][col] = initial_BH[col]
for col in final_BH.dtype.names:
self.final_values[i][col] = final_BH[col]
if initial_H1 is not None:
for col in initial_H1.dtype.names:
newcol = "S1_" + col
self.initial_values[i][newcol] = initial_H1[col]
for col in final_H1.dtype.names:
newcol = "S1_" + col
self.final_values[i][newcol] = final_H1[col]
if initial_H2 is not None:
for col in initial_H2.dtype.names:
newcol = "S2_" + col
self.initial_values[i][newcol] = initial_H2[col]
for col in final_H2.dtype.names:
newcol = "S2_" + col
self.final_values[i][newcol] = final_H2[col]
if not ignore:
if addX:
self.initial_values[i]["X"] = where_to_add["X"]
if addY:
self.initial_values[i]["Y"] = where_to_add["Y"]
if addZ:
self.initial_values[i]["Z"] = where_to_add["Z"]
if binary_grid:
if ignore:
termination_flags = [ignore.reason] * N_FLAGS
else:
termination_flags = get_flags_from_MESA_run(
run.out_txt_path, binary_history=binary_history,
history1=history1, history2=history2,
start_at_RLO=start_at_RLO, newTF1=newTF1)
else:
if ignore:
termination_flags = [ignore.reason] * N_FLAGS_SINGLE
else:
termination_flags = [
get_flag_from_MESA_output(run.out_txt_path),
check_state_from_history(history1,
history1["star_mass"])
]
if ignore:
for colname in self.final_values.dtype.names:
if (colname.startswith("termination_flag_")
or colname.startswith("interpolation_class")):
self.final_values[i][colname] = ignore.reason
else:
self.final_values[i][colname] = np.nan
for colname in self.initial_values.dtype.names:
self.initial_values[i][colname] = np.nan
# now update the initial values from the grid point data
grid_point = read_initial_values(run.path)
for colname, value in grid_point.items():
if colname in self.initial_values.dtype.names:
self.initial_values[i][colname] = value
if np.isnan(self.initial_values[i]["Z"]):
# try to get metallicity from directory name
params_from_path = initial_values_from_dirname(run.path)
if (len(params_from_path)==4) or\
(len(params_from_path)==2):
self.initial_values[i]["Z"] = params_from_path[-1]
else:
for flag, col in zip(termination_flags,
termination_flag_columns):
if flag is None:
flag = ""
self.final_values[i][col] = flag
if binary_grid:
self.final_values[i]["interpolation_class"] = \
infer_interpolation_class(*termination_flags[:2])
if ignore:
# if not fix requested and failed run, do not include the data
if start_at_RLO and (ignore.reason == "ignored_no_RLO"):
# allow non-RLOing systems to be included in the grid
# so that rerun grid can signify systems as non-RLOing
# instead of keeping the old system
pass
else:
continue
# no fix... discard this system
# if data to be included, downsample and store
if not slim:
if ignore:
hdf5.create_group("/grid/run{}/".format(run_index))
else:
# downsample and save
histories_DS = downsample_history(
binary_history, history1, history2, params=self.config)
binary_history_DS, history1_DS, history2_DS = histories_DS
final_profile1_DS = downsample_profile(
final_profile1, params=self.config)
final_profile2_DS = downsample_profile(
final_profile2, params=self.config)
# store the data
arrays_to_save = [binary_history_DS,
history1_DS,
history2_DS,
final_profile1_DS,
final_profile2_DS]
keys_to_arrays = ['binary_history',
'history1', 'history2',
'final_profile1',
'final_profile2']
for array, name in zip(arrays_to_save, keys_to_arrays):
if array is not None:
hdf5.create_dataset(
"/grid/run{}/{}".format(run_index, name),
data=array, **compression_args)
# consider the run (and the input directory) included
self.MESA_dirs.append(run.path)
run_included_at[i] = run_index
run_index += 1
# check that new MESA path is added at run_index
lenMESA_dirs = len(self.MESA_dirs)
if lenMESA_dirs!=run_index:
Pwarn("Non synchronous indexing: " +\
"run_index={} != ".format(run_index) +\
"length(MESA_dirs)={}".format(lenMESA_dirs),
"InappropriateValueWarning")
#general fix for termination_flag in case of initial RLO in binaries
if binary_grid and initial_RLO_fix:
#create list of already detected initial RLO
detected_initial_RLO = get_detected_initial_RLO(self)
colnames = ["termination_flag_1", "termination_flag_2",
"interpolation_class"]
valtoset = ["forced_initial_RLO", "forced_initial_RLO",
"initial_MT"]
for i in range(N_runs):
flag1 = self.final_values[i]["termination_flag_1"]
if flag1 != "Terminate because of overflowing initial model":
#use grid point data (if existing) to detect initial RLO
grid_point = read_initial_values(grid.runs[i].path)
if "star_1_mass" in grid_point:
mass1 = grid_point["star_1_mass"]
else:
mass1 = self.initial_values[i]["star_1_mass"]
Pwarn("No star_1_mass in "+grid.runs[i].path,
"ReplaceValueWarning")
if "star_2_mass" in grid_point:
mass2 = grid_point["star_2_mass"]
else:
mass2 = self.initial_values[i]["star_2_mass"]
Pwarn("No star_2_mass in "+grid.runs[i].path,
"ReplaceValueWarning")
if "period_days" in grid_point:
period = grid_point["period_days"]
else:
period = self.initial_values[i]["period_days"]
Pwarn("No period_days in "+grid.runs[i].path,
"ReplaceValueWarning")
nearest = get_nearest_known_initial_RLO(mass1, mass2,
detected_initial_RLO)
if period<nearest["period_days"]:
#set values
for colname, value in zip(colnames, valtoset):
self.final_values[i][colname] = value
#copy values from nearest known system
for colname in ["termination_flag_3",
"termination_flag_4"]:
if colname in nearest:
self.final_values[i][colname]=nearest[colname]
#reset the initial values to the grid point data
for colname, value in grid_point.items():
if colname in self.initial_values.dtype.names:
self.initial_values[i][colname] = value
#add initial RLO system if not added before
if run_included_at[i]==-1:
if not slim:
hdf5.create_group(
"/grid/run{}/".format(run_index))
#include the run (and the input directory)
self.MESA_dirs.append(grid.runs[i].path)
run_included_at[i] = run_index
run_index += 1
#check that new MESA path is added at run_index
lenMESA_dirs = len(self.MESA_dirs)
if lenMESA_dirs!=run_index:
Pwarn("Non synchronous indexing: " +\
"run_index={} != ".format(run_index) +\
"length(MESA_dirs)={}".format(lenMESA_dirs),
"InappropriateValueWarning")
self._say("Storing initial/final values and metadata to HDF5...")
#create new array of initial and finial values with included runs
# only and sort it by run_index
new_initial_values = initialize_empty_array(
np.empty(run_index, dtype=dtype_initial_values))
new_final_values = initialize_empty_array(
np.empty(run_index, dtype=dtype_final_values))
for i in range(N_runs):
#only use included runs with a valid index
if run_included_at[i]>=0:
#check for index range
if run_included_at[i]>=run_index:
Pwarn("run {} has a run_index out of ".format(i) +
"range: {}>={}".format(run_included_at[i], run_index),
"InappropriateValueWarning")
continue
#copy initial values or fill with nan if not existing in original
for colname in dtype_initial_values.names:
if colname in self.initial_values.dtype.names:
value = self.initial_values[i][colname]
new_initial_values[run_included_at[i]][colname] = value
else:
new_initial_values[run_included_at[i]][colname] = np.nan
#copy final values or fill with nan if not existing in original
for colname in dtype_final_values.names:
if colname in self.final_values.dtype.names:
value = self.final_values[i][colname]
new_final_values[run_included_at[i]][colname] = value
else:
new_final_values[run_included_at[i]][colname] = np.nan
#replace old initial/final value array
self.initial_values = np.copy(new_initial_values)
self.final_values = np.copy(new_final_values)
# Store the full table of initial_values
hdf5.create_dataset("/grid/initial_values", data=self.initial_values,
**compression_args)
# Store the full table of final_values (including termination flags)
termination_flag_columns = np.array(termination_flag_columns)
hdf5.create_dataset("/grid/final_values", data=self.final_values,
**compression_args)
hdf5.attrs["config"] = json.dumps(str(dict(self.config)))
hdf5.create_dataset(
"relative_file_paths",
data=np.asarray(self.MESA_dirs, dtype=H5_UNICODE_DTYPE),
**compression_args)
[docs]
def add_column(self, colname, array, where="final_values", overwrite=True):
"""Add a new numerical column in the final values array."""
if not isinstance(array, np.ndarray):
arr = np.asarray(array)
else:
arr = array
if where != "final_values":
raise ValueError("Only adding columns to `final_values` allowed.")
if len(self) != len(arr):
raise ValueError("`array` has {} elements but the grid has {} runs"
.format(len(arr), len(self)))
if colname in self.final_values.dtype.names:
if overwrite:
self.final_values[colname] = arr
else:
raise Exception("Column `{}` already exists in final values.".
format(colname))
else:
self.final_values = add_field(self.final_values,
[(colname, arr.dtype.descr[0][1])])
self.final_values[colname] = arr
self.update_final_values()
[docs]
def update_final_values(self):
"""Update the final values in the HDF5 file."""
self._reload_hdf5_file(writeable=True)
new_dtype = []
for dtype in self.final_values.dtype.descr:
if (dtype[0].startswith("termination_flag") or
(dtype[0] == "mt_history") or ("_type" in dtype[0]) or
("_state" in dtype[0]) or ("_class" in dtype[0])):
dtype = (dtype[0], H5_REC_STR_DTYPE.replace("U", "S"))
new_dtype.append(dtype)
if dtype[1] == np.dtype('O'):
print(dtype[0])
final_values = self.final_values.astype(new_dtype)
del self.hdf5["/grid/final_values"]
self.hdf5.create_dataset("/grid/final_values", data=final_values,
**self.compression_args)
# self.hdf5["/grid/final_values"] = final_values
self._reload_hdf5_file(writeable=False)
def _reload_hdf5_file(self, writeable=False):
driver_args = {} if "%d" not in self.filepath else {
"driver": "family", "memb_size": HDF5_MEMBER_SIZE}
self.close()
mode = "a" if writeable else "r"
self.hdf5 = h5py.File(self.filepath, mode, **driver_args)
[docs]
def load(self, filepath=None):
"""Load up a previously created PSyGrid object from an HDF5 file.
Parameters
----------
filepath : str
Location of the HDF5 file to be loaded. If not provided, assume
it was defined during the initialization (argument: `filepath`).
"""
self._say("Loading HDF5 grid...")
# if not filepath defined, take it from the attribute
if filepath is not None:
self.filepath = filepath
if self.filepath is None:
raise ValueError("The path of the HDF5 file was not defined.")
driver_args = {} if "%d" not in self.filepath else {
"driver": "family", "memb_size": HDF5_MEMBER_SIZE}
self.hdf5 = h5py.File(self.filepath, "r", **driver_args)
hdf5 = self.hdf5
# load initial/final_values
self._say("\tLoading initial/final values...")
self.initial_values = hdf5['/grid/initial_values'][()]
self.final_values = hdf5['/grid/final_values'][()]
# change ASCII to UNICODE in termination flags in `final_values`
new_dtype = []
for dtype in self.final_values.dtype.descr:
if (dtype[0].startswith("termination_flag") or
(dtype[0] == "mt_history") or ("_type" in dtype[0]) or
("_state" in dtype[0]) or ("_class" in dtype[0])):
dtype = (dtype[0], H5_REC_STR_DTYPE.replace("S", "U"))
new_dtype.append(dtype)
self.final_values = self.final_values.astype(new_dtype)
# load MESA dirs
self._say("\tAcquiring paths to MESA directories...")
self.MESA_dirs = list(hdf5["/relative_file_paths"])
# load config & assert that run indices are 0-indexed & sequential
# load configuration
self._say("\tGetting configuration metadata...")
configuration_string = hdf5.attrs["config"]
config = ast.literal_eval(ast.literal_eval(configuration_string))
self.config = ConfigFile()
self.config.update(config)
# enumerate the runs included, and ensure that:
# (i) are as many as the MESA_dirs, or 0 (slim psyrid)
# (ii) sequential and starting from 0
self._say("\tEnumerating runs and checking integrity of grid...")
n_expected = len(self.MESA_dirs)
included = np.zeros(n_expected, dtype=bool)
for key in hdf5["/grid"].keys():
if key.startswith("run") and key != "run":
index = int(key[3:])
if index < 0:
raise KeyError("Negative index {} does not make sense".
format(index))
if index >= n_expected:
raise KeyError("More runs than MESA dirs? Gaps?")
if included[index]:
raise KeyError("Duplicate key {}?".format(key))
included[index] = True
if not np.any(included): # if slim grid... no problem!
self.n_runs = 0
elif np.all(included):
self.n_runs = n_expected
else:
raise KeyError("Some runs are missing from the HDF5 grid.")
self._say("\tDone.")
[docs]
def close(self):
"""Close the HDF5 file if open."""
if hasattr(self, "hdf5") and self.hdf5 is not None:
self.hdf5.close()
self.hdf5 = None
def __str__(self):
"""Return the status of the PSyGrid."""
ret = "PSyGrid instance:\n"
if self.filepath is None:
ret += "\tNo HDF5 file path. PSyGrid instance is likely empty.\n"
return ret
ret += "\tLoaded from: {}\n\n".format(self.filepath)
# Check if instance has loaded up the .npz data
if self.n_runs == 0:
ret += "\tNo runs found in the grid (empty or 'slim' version).\n"
else:
ret += "\t{} runs found. They include:\n".format(self.n_runs)
# Cycle through runs to count the number of data files
def one_if_ok(data):
"""1 if data is not None and has at least one row, else 0."""
return 0 if data is None or len(data) == 0 else 1
N_binary_history = 0
N_history1 = 0
N_history2 = 0
N_final_profile1 = 0
N_final_profile2 = 0
for run in self:
N_binary_history += one_if_ok(run.binary_history)
N_history1 += one_if_ok(run.history1)
N_history2 += one_if_ok(run.history2)
N_final_profile1 += one_if_ok(run.final_profile1)
N_final_profile2 += one_if_ok(run.final_profile2)
ret += "\t\t{} binary_history files.\n".format(N_binary_history)
ret += "\t\t{} history1 files.\n".format(N_history1)
ret += "\t\t{} history2 files.\n".format(N_history2)
ret += "\t\t{} final_profile1 files.\n".format(N_final_profile1)
ret += "\t\t{} final_profile2 files.\n".format(N_final_profile2)
if run.binary_history is not None:
ret += "\nColumns in binary_history: {}\n".format(
run.binary_history.dtype.names)
if run.history1 is not None:
ret += "\nColumns in history1: {}\n".format(
run.history1.dtype.names)
if run.history2 is not None:
ret += "\nColumns in history2: {}\n".format(
run.history2.dtype.names)
if run.final_profile1 is not None:
ret += "\nColumns in final_profile1: {}\n".format(
run.final_profile1.dtype.names)
if run.final_profile2 is not None:
ret += "\nColumns in final_profile2: {}\n".format(
run.final_profile2.dtype.names)
ret += "\n"
# Print out initial values array parameters
if self.initial_values is None:
ret += "Initial values array is not loaded.\n\n"
else:
ret += "Columns in initial values:\n"
ret += str(self.initial_values.dtype.names) + "\n\n"
# Print out final values array parameters
if self.final_values is None:
ret += "Final values array is not loaded.\n\n"
else:
ret += "Columns in final values:\n"
ret += str(self.final_values.dtype.names) + "\n\n"
# Print out configuration file parameters
ret += "Configuration:\n"
config_string = str(self.config)
if config_string == "":
ret += "\t(empty)\n\n"
else:
# separate config items with lines that start with a tab
ret += "\t" + "\n\t".join(config_string.split("\n")) + "\n\n"
# Print out examples of MESA dirs (if grid is not empty)
n_dirs = len(self.MESA_dirs)
if n_dirs != 0 or self.n_runs != 0:
ret += "Relative paths to MESA run directories:\n"
if n_dirs == 0:
ret += "\tNo MESA directory found.\n"
elif n_dirs == 1:
ret += "\t{}\n".format(self.MESA_dirs[0])
elif n_dirs == 2:
ret += "\t{}\n".format(self.MESA_dirs[0])
ret += "\t{}\n".format(self.MESA_dirs[1])
else:
ret += "\t{}\n".format(self.MESA_dirs[0])
ret += "\t...({} other directories)\n".format(n_dirs - 2)
ret += "\t{}\n".format(self.MESA_dirs[-1])
return ret
def __getitem__(self, index):
"""Return a PSyRunView instance for the run with index `index`."""
if not np.issubdtype(type(index), int):
raise TypeError("Index {} is not of type int".format(index))
if index not in self:
raise IndexError("Index {} out of bounds.".format(index))
return PSyRunView(self, index)
[docs]
def get_pandas_initial_final(self):
"""Convert the initial/final values into a single Pandas dataframe."""
df = pd.DataFrame()
for key in self.initial_values.dtype.names:
new_col_name = "initial_" + key
df[new_col_name] = self.initial_values[key]
for key in self.final_values.dtype.names:
new_col_name = "final_" + key
df[new_col_name] = self.final_values[key]
return df
def __len__(self):
"""Return the number of runs in the grid."""
return self.n_runs
def __contains__(self, index):
"""Return True if run with index `index` is in the grid."""
if not np.issubdtype(type(index), int):
raise TypeError("Index {} is not of type int".format(index))
return 0 <= index < self.n_runs
def __iter__(self):
"""Allow iteration of runs (`for` loops, lists, sets)."""
return PSyGridIterator(self)
def __del__(self):
"""Destructor of the object, closing the HDF5 file if opened."""
# IMPORTANT: do not delete this - it is necessary in interactive mode
self.close()
[docs]
def rerun(self, path_to_file='./', runs_to_rerun=None,
termination_flags=None, new_mesa_flag=None,
flags_to_check=None):
"""Create a CSV file with the PSyGrid initial values to rerun.
This methods allows you to create a CSV file with the psygrid initial
values you want to rerun.
Parameters
----------
path_to_file : str
The path to the directory where the new `grid.csv` file will be
saved. If the directory does not exist it will be created.
runs_to_rerun : list of integers
Array containing the indecies of the psygrid runs you want to rerun
e.g., runs_to_rerun = [2,3]
termination_flags : str or list of str
The runs with this termination flag will be rerun.
e.g. termination_flags='max_number_retries'
new_mesa_flag : dict
Dictionary of flags with their value to add as extra columns to the
`grid.csv`. The user can specify any arbitrary amount of flags.
e.g. new_mesa_flag = {'varcontrol_target': 0.01}
flags_to_check : str or list of str
The key(s) of flags to check the termination_flags against.
e.g. check_flags = 'termination_flag_1'
"""
# check that the 'path_to_file' exists
if not os.path.exists(path_to_file):
os.makedirs(path_to_file)
# check 'runs_to_rerun' has a valid type
if isinstance(runs_to_rerun, list):
runs_to_rerun_list = runs_to_rerun
elif runs_to_rerun is not None:
try:
runs_to_rerun_list = list(runs_to_rerun)
except:
raise TypeError("'runs_to_rerun' should be a list or None.")
# check termination flags
if termination_flags is not None:
if flags_to_check is None:
flags_to_check_list = ['termination_flag_1']
elif isinstance(flags_to_check, str):
flags_to_check_list = [flags_to_check]
elif isinstance(flags_to_check, list):
flags_to_check_list = flags_to_check
else:
try:
flags_to_check_list = list(flags_to_check)
except:
raise TypeError("'flags_to_check' should be a string or a "
"list of strings.")
if isinstance(termination_flags, str):
termination_flags_list = [termination_flags]
elif isinstance(termination_flags, list):
termination_flags_list = termination_flags
else:
try:
termination_flags_list = list(termination_flags)
except:
raise TypeError("'termination_flags' should be a string or"
" a list of strings.")
# getting indices of runs with the termination flag(s)
new_runs_to_rerun_list = []
for flag in flags_to_check_list:
if flag in self.final_values.dtype.names:
for i, tf in enumerate(self.final_values[flag]):
if tf in termination_flags_list:
new_runs_to_rerun_list.append(i)
else:
self._say("\tFlag: {} not found. Skip it.".format(flag))
# add runs with the termination flag(s) to the collection of reruns
if runs_to_rerun is None:
runs_to_rerun_list = new_runs_to_rerun_list
else:
runs_to_rerun_list += new_runs_to_rerun_list
elif runs_to_rerun is None:
raise ValueError("Either 'runs_to_rerun' or 'termination_flags' "
"has to be specified and therefore different from"
" None.")
# ensure that each index only appears once
runs_to_rerun_list_unique = list(dict.fromkeys(runs_to_rerun_list))
# getting columns for the new grid.csv file
column_names = {}
if 'star_1_mass' in self.initial_values.dtype.names:
column_names['m1'] = 'star_1_mass'
if 'star_2_mass' in self.initial_values.dtype.names:
column_names['m2'] = 'star_2_mass'
if 'period_days' in self.initial_values.dtype.names:
column_names['initial_period_in_days'] = 'period_days'
if 'Z' in self.initial_values.dtype.names:
if len(self.MESA_dirs)>0:
# assume first entry of the MESA_dirs is representative of the
# grid
MESA_dir_name = self.MESA_dirs[0].decode("utf-8")
if 'initial_z' in MESA_dir_name:
column_names['initial_z'] = 'Z'
if 'Zbase' in MESA_dir_name:
column_names['Zbase'] = 'Z'
if 'new_Z' in MESA_dir_name:
column_names['new_Z'] = 'Z'
else:
raise Exception("No MESA dirs of previous runs in the grid.")
# getting the initial data set
NDIG = 10 # rounding matches initial point rounding
runs_data = {}
for key in column_names.keys():
grid_key = column_names[key]
runs_data[key] = []
for idx in runs_to_rerun_list_unique:
runs_data[key].append(np.around(self.initial_values[grid_key][idx], NDIG))
if len(column_names)>0:
n_runs = len(runs_data[list(column_names)[0]])
else:
n_runs = 0
# add new_mesa_flag
if new_mesa_flag is not None:
for key in new_mesa_flag.keys():
runs_data[key] = [new_mesa_flag[key]]*n_runs
runs_data_frame = pd.DataFrame(runs_data)
runs_data_frame.to_csv(os.path.join(path_to_file, 'grid.csv'),
na_rep='nan', index=False)
[docs]
def plot2D(self, x_var_str, y_var_str, z_var_str=None,
termination_flag='termination_flag_1',
grid_3D=None, slice_3D_var_str=None, slice_3D_var_range=None,
grid_4D=None, slice_4D_var_str=None, slice_4D_var_range=None,
extra_grid=None, slice_at_RLO=False,
MARKERS_COLORS_LEGENDS=None, max_cols=3, legend_pos=(3, 3),
verbose=False, **kwargs):
"""Plot a 2D slice of x_var_str vs y_var_str of one or more runs.
Parameters
----------
x_var_str : str
String of the initial value to plot on the x axis. Allowed strings
are `psygrid.initial_values.dtype.names`.
y_var_str : str
String of the initial value to plot on the y axis. Allowed strings
are `psygrid.initial_values.dtype.names`.
z_var_str : str
String of the initial value to plot on the z axis (displayed as
a color). Allowed strings are
`psygrid.final_values.dtype.names`, `psygrid.history1.dtype.names`,
`psygrid.binary_history.dtype.names`.
termination_flag : str
Termination flag to display, allowed values are:
"termination_flag_1", "termination_flag_2", "termination_flag_3",
"termination_flag_4", "all".
grid_3D : bool
If `True`, the psygrid object is a 3D grid and needs to be sliced.
slice_3D_var_str : str
Variable along which the 3D space will be sliced. Allowed values
are `psygrid.initial_values.dtype.names`.
slice_3D_var_range : tuple or a list of tuples
Range between which you want to slice the variable slice_3D_var_str
e.g., `(2.5,3.)`. In case of a list of tuples, one will get a large
plot with one subplot for each tuple in the list.
grid_4D : bool
If `True`, the psygrid object is a 4D grid and needs to be sliced.
slice_4D_var_str : str
Variable along which the 4D space will be sliced. Allowed values
are `psygrid.initial_values.dtype.names`.
slice_4D_var_range : tuple or a list of tuples
Range between which you want to slice the variable slice_4D_var_str
e.g., `(2.5,3.)`. In case of a list of tuples, one will get a large
plot with one subplot for each tuple in the list.
extra_grid : object or array of objects
If subset of the grid was rerun a or an extention was added, one
can overlay the new psygrid by passing it here.
slice_at_RLO : bool
If `True`, the object plots the tracks until onset of Roche Lobe
overflow.
MARKERS_COLORS_LEGENDS : dict
Each termination flag is associated with a marker shape, size,
color and label (cf. `MARKERS_COLORS_LEGENDS` in
`plot_defaults.py`).
max_cols : int
Defines the maximum number of columns of subplots. Default: 3
legend_pos : SubplotSpec (int or tuple)
Defines which subplots won't contain an axis but are used to
display the legend there. Default: (3, 3)
verbose : bool
If `True`, the object reports by printing to standard output.
**kwargs : dict
Dictionary containing extra visualisation options (cf.
`PLOT_PROPERTIES` in `plot_defaults.py`.
"""
plot = plot2D(psygrid=self,
x_var_str=x_var_str,
y_var_str=y_var_str,
z_var_str=z_var_str,
termination_flag=termination_flag,
grid_3D=grid_3D,
slice_3D_var_str=slice_3D_var_str,
slice_3D_var_range=slice_3D_var_range,
grid_4D=grid_4D,
slice_4D_var_str=slice_4D_var_str,
slice_4D_var_range=slice_4D_var_range,
extra_grid=extra_grid,
slice_at_RLO=slice_at_RLO,
MARKERS_COLORS_LEGENDS=MARKERS_COLORS_LEGENDS,
max_cols=max_cols,
legend_pos=legend_pos,
verbose=verbose,
**kwargs)
plot()
[docs]
def plot(self, idx, x_var_str, y_var_str, z_var_str=None,
history='binary_history', verbose=False, **kwargs):
"""Plot a 1D track of x_var_str vs y_var_str.
Parameters
----------
idx : int or list of int
Index or indices of runs to plot.
x_var_str : str
String of values to plot on the x axis. Allowed strings are the
one in `psygrid.history.dtype.names` where "history" needs to be
chosen accordingly.
y_var_str : str or list of str
String or list of stringvalues to plot on the y axis. Allowed
strings are the one in `psygrid.history.dtype.names` where
"history" needs to be chosen accordingly.
z_var_str : str
String of values to plot on the z axis (displayed with a color).
Allowed strings are the one in `psygrid.history.dtype.names` where
"history" needs to be chosen accordingly.
history : str
The x, y, z variables are read from either: "binary_history",
"history1", "history2".
verbose : bool
If `True`, the object reports by printing to standard output.
**kwargs : dict
Dictionary containing extra visualisation options
(cf. `PLOT_PROPERTIES` in `plot_defaults.py`).
"""
if isinstance(idx, list):
runs = []
for i in idx:
runs.append(self[i])
elif isinstance(idx, int):
runs = [self[idx]]
else:
raise ValueError('Invalid idx = {}!'.format(idx))
plot = plot1D(run=runs,
x_var_str=x_var_str,
y_var_str=y_var_str,
z_var_str=z_var_str,
history=history,
HR=False,
verbose=verbose,
**kwargs)
plot()
[docs]
def HR(self, idx, history='history1', states=False, verbose=False,
**kwargs):
"""Plot the HR diagram of one or more runs.
Parameters
----------
idx : int or list of int
Index or indices of runs to plot.
history : str
Which history is going to be used. The options are:
"binary_history", "history1", or "history2".
states : bool
If true the HR diagram shows the stellar state with a color map.
verbose : bool
If `True`, the object reports by printing to standard output.
**kwargs : dict
Dictionary containing extra visualisation options
(cf. `PLOT_PROPERTIES` in `plot_defaults.py`).
"""
if isinstance(idx, list):
runs = []
for i in idx:
runs.append(self[i])
elif isinstance(idx, int):
runs = [self[idx]]
else:
raise ValueError('Invalid idx = {}!'.format(idx))
if states:
from posydon.binary_evol.singlestar import SingleStar
star_states = []
for run in runs:
star = SingleStar.from_run(run, history=True, profile=False)
star_states.append(check_state_of_star_history_array(
star, N=len(star.mass_history)))
else:
star_states = None
plot = plot1D(run=runs,
x_var_str=None,
y_var_str=None,
history=history,
star_states=star_states,
HR=True,
verbose=verbose,
**kwargs)
plot()
def __eq__(self, other, verbose=True):
"""Check the equality (in terms of the data) of two PSyGrid objects."""
def say(msg):
if verbose:
print("COMPARISON:", msg)
if not isinstance(other, PSyGrid):
say("Only PSyGrid instances should be compared.")
return False
if len(self) != len(other):
say("The grids do not contain the same number of runs ({} != {})".
format(len(self), len(other)))
for prop in PROPERTIES_TO_BE_CONSISTENT:
val1, val2 = self.config[prop], other.config[prop]
if val1 != val2:
say("Property `{}` is not the same ({} != {})".
format(prop, val1, val2))
return False
# just report differences for parameters that are not data-relevant
for prop in ["compression", "description"]:
val1, val2 = self.config[prop], other.config[prop]
if val1 != val2:
say("Property `{}` is not the same ({} != {})".
format(prop, val1, val2))
for tablename in ["initial_values", "final_values"]:
arr1, arr2 = getattr(self, tablename), getattr(other, tablename)
columns1, columns2 = arr1.dtype.names, arr2.dtype.names
if np.all(arr1 == arr2):
continue
if len(columns1) != len(columns2):
say("Number of columns in `{}` do not match ({} != {})".
format(tablename, len(columns1), len(columns2)))
return False
if columns1 != columns2:
say("Columns in `{}` do not match:\n{}\n!=\n{}\n".format
(tablename, "\n".join(columns1), "\n".join(columns2)))
return False
for colname in columns1:
data1, data2 = arr1[colname], arr2[colname]
if len(data1) != len(data2):
say("Column `{}` in `{}` not of same length.".
format(colname, tablename))
if np.any(data1 != data2):
for val1, val2 in zip(data1, data2):
if ((val1 == val2) or (val1 is None and val2 is None)
or (np.isnan(val1) and np.isnan(val2))):
continue
say("Column `{}` in `{}` is not the same ({} != {}).".
format(colname, tablename, val1, val2))
return False
for i, (run1, run2) in enumerate(zip(self, other)):
for tablename in ["binary_history", "history1", "history2",
"final_profile1", "final_profile2"]:
arr1, arr2 = getattr(run1, tablename), getattr(run2, tablename)
if arr1 is None and arr2 is None:
continue # tables missing for both runs
if arr1 is None or arr2 is None:
which = "1st" if arr1 is None else "2nd"
say("Table `{}` for run `{}` missing in {} grid.".
format(tablename, i, which))
return False
if np.all(arr1 != arr2):
say("Table `{}` for run `{}` is not the same.".
format(tablename, i))
return True
[docs]
class PSyGridIterator:
"""Class for iterating runs (i.e., PSyRunView instances) in a PSyGrid."""
def __init__(self, grid):
"""Initialize by pointing to the PSyGrid object."""
self._grid = grid
self._index = 0
def __next__(self):
"""Return current run and move to the next."""
if self._index >= len(self._grid):
raise StopIteration
item = self._grid[self._index]
self._index += 1
return item
[docs]
class PSyRunView:
"""Access runs in HDF5 grid without opening all data.
Example
-------
mygrid = PSyGrid("thegrid.h5") # opens a stored grid
myrun = mygrid[0] # get a "view" of the first run in the grid
print(mygrid[1].history1.star_age)
t1 = myrun["binary_history"]["age"]
t2 = myrun["binary_history"].age
t3 = myrun.binary_history["age"]
t4 = myrun.binary_history.age
print(mygrid[1].history1.star_age)
"""
def __init__(self, psygrid, run_index):
"""Initialize by linking to a PSyGrid object and setting run index."""
self.psygrid = psygrid
self.index = run_index
def _hdf5_key(self):
return "/grid/run{}".format(self.index)
def __getitem__(self, key):
"""Get a table for a specific run using its name as in ["name"]."""
if key not in VALID_KEYS:
raise KeyError("Key {} not in list of valid keys.".format(key))
if key == "initial_values":
return self.psygrid.initial_values[self.index]
elif key == "final_values":
return self.psygrid.final_values[self.index]
hdf5 = self.psygrid.hdf5
if hdf5 is None:
raise Exception("The HDF5 file is not open.")
fullkey = self._hdf5_key() + "/" + key
try:
return hdf5[fullkey][()]
except KeyError:
if key in VALID_KEYS: # key is valid, so the data is just missing
return None
raise KeyError("There is no key '{}' in '{}'".
format(fullkey, self.psygrid.filepath))
def __getattr__(self, key):
"""Enable the ability of using `.table1` instead of ["table1"]."""
return self[key]
def __str__(self):
"""Return a summary of the PSyRunView in a string."""
return "View of the run {} in the file '{}' at key '{}'".format(
self.index, self.psygrid.filepath, self._hdf5_key())
[docs]
def downsample_history(bh, h1, h2, params):
"""Downsample history data of a run.
Parameters
----------
bh : record array
The binary history table.
h1 : record array
The history of star 1.
h2 : record array
The history of star 2.
params : ConfigFile
A ConfigFile instance holding the downsampling parameters.
Returns
-------
tuple of record arrays
The three record arrays corresponding to the downsample binary,
star 1, and star2 histories.
"""
max_err, exclude = params["history_DS_error"], params["history_DS_exclude"]
if max_err is None or (bh is None and h1 is None and h2 is None):
return bh, h1, h2
# select the data based on which the downsampling will be computed
number_of_rows = None
dependent = []
for history_table in [bh, h1, h2]:
if history_table is not None:
if number_of_rows is None:
number_of_rows = len(history_table)
else:
if len(history_table) != number_of_rows:
raise Exception("Unequal numbers of rows in histories.")
for column_name in history_table.dtype.names:
if column_name not in exclude:
dependent.append(history_table[column_name])
dependent = np.array(dependent).T
if params["binary"]:
independent = bh["age"]
else:
independent = h1["star_age"]
# find which rows to keep for having optimum downsampling
TD = TrackDownsampler(independent, dependent)
TD.find_downsample(max_err)
# ... and return only these rows
def correct_shape(array):
return array[0] if len(array.shape) == 2 else array
return (correct_shape(bh[TD.keep]) if bh is not None else None,
correct_shape(h1[TD.keep]) if h1 is not None else None,
correct_shape(h2[TD.keep]) if h2 is not None else None)
[docs]
def downsample_profile(profile, params):
"""Downsample a profile table.
Parameters
----------
profile : record array
The profile data with column names defined.
params : ConfigFile
A ConfigFile instance holding the downsampling parameters.
Returns
-------
record array
The downsampled profile.
"""
max_err, exclude = params["profile_DS_error"], params["profile_DS_exclude"]
max_interval = params["profile_DS_interval"]
if max_err is None or profile is None:
return profile
# select the data based on which the downsampling will be computed
dependent = []
for column_name in profile.dtype.names:
if column_name not in exclude:
dependent.append(profile[column_name][::-1]) # invert order
dependent = np.array(dependent).T
independent = profile["mass"][::-1]
# find which rows to keep for having optimum downsampling
TD = TrackDownsampler(independent, dependent)
TD.find_downsample(max_err, max_interval)
# ... and return only these rows
return profile[TD.keep[::-1]] # invert order again
PROPERTIES_ALLOWED = {"format": "hdf5"}
PROPERTIES_TO_BE_SET = ["compression", "description"]
PROPERTIES_TO_BE_NONE = {
"max_number_of_runs": None,
"star1_history_saved_columns": None,
"star2_history_saved_columns": None,
"binary_history_saved_columns": None,
"star1_profile_saved_columns": None,
"star2_profile_saved_columns": None,
"initial_value_columns": None,
"final_value_columns": None,
}
PROPERTIES_TO_BE_CONSISTENT = ["binary", "eep", "start_at_RLO",
"stop_before_carbon_depletion",
"initial_RLO_fix", "He_core_fix",
"accept_missing_profile", "history_DS_error",
"history_DS_exclude", "profile_DS_error",
"profile_DS_exclude", "profile_DS_interval"]
ALL_PROPERTIES = (list(PROPERTIES_ALLOWED.keys()) + PROPERTIES_TO_BE_CONSISTENT
+ list(PROPERTIES_TO_BE_NONE.keys()) + PROPERTIES_TO_BE_SET)
[docs]
def join_grids(input_paths, output_path,
compression="gzip9", description="joined", verbose=True):
"""Join two or more PSyGrid HDF5 files into one."""
def say(something):
if verbose:
print(something)
# open the grids, and figure out the configuration of the new joined grid
grids = []
newconfig = None
initial_dtype = None
final_dtype = None
for input_path in input_paths:
say("Checking {}".format(input_path))
say(" opening and getting configuration...")
grid = PSyGrid(input_path)
curconfig = grid.config
# check we did not forget about a property, and their consistency
assert len(ALL_PROPERTIES) == len(curconfig.keys())
for key in curconfig.keys():
assert key in ALL_PROPERTIES
if newconfig is None: # this is the first grid
say(" copying configuration...")
newconfig = curconfig.deepcopy()
initial_dtype = grid.initial_values.dtype
final_dtype = grid.final_values.dtype
else:
say(" checking consistency of configuration and dtypes...")
for prop in PROPERTIES_TO_BE_CONSISTENT:
newvalue, curvalue = newconfig[prop], curconfig[prop]
if newvalue != curvalue:
raise Exception("Inconsistent value for `{}`: {} != {}".
format(prop, curvalue, newvalue))
if initial_dtype != grid.initial_values.dtype:
raise Exception("Initial values dtype's do not match.")
if final_dtype != grid.final_values.dtype:
raise Exception("Final values dtype's do not match.")
grids.append(grid)
say("Finalizing grid properties...")
# ensure supported property values
for prop, allowed_value in PROPERTIES_ALLOWED.items():
if newconfig[prop] != allowed_value:
raise ValueError("Only grid with `{}`={} can be joined.".
format(prop, allowed_value))
# set fixed property values
newconfig.update(PROPERTIES_TO_BE_NONE)
# new values set by used
assert("compression" in PROPERTIES_TO_BE_SET
and "description" in PROPERTIES_TO_BE_SET)
newconfig["compression"] = compression
newconfig["description"] = description
# for each set of initial parameters, indicate the grid and the run to use
# (this handles reruns, substituting older runs).
say("Inferring which runs to include, from which grid...")
initial_params = {}
n_substitutions = 0
n_ignored_noRLO = 0
for grid_index, grid in enumerate(grids):
for run_index, dir_path in enumerate(grid.MESA_dirs):
# get the parameters part from the dir name
params_from_path = initial_values_from_dirname(dir_path)
if params_from_path in initial_params:
n_substitutions += 1
initial_params[params_from_path] = (grid_index, run_index)
if (grid[run_index].final_values["termination_flag_1"]
== "ignored_no_RLO"):
if params_from_path in initial_params:
del initial_params[params_from_path]
n_ignored_noRLO += 1
say(" {} substitutions detected.".format(n_substitutions))
if newconfig["start_at_RLO"]:
say(" {} runs ignored beacuse of no RLOF.".format(n_ignored_noRLO))
say(" {} runs to be joined.".format(len(initial_params)))
if (newconfig["initial_RLO_fix"]):
say("Determine initial RLO boundary from all grids")
detected_initial_RLO = []
colnames = ["termination_flag_1", "termination_flag_2", "interpolation_class"]
valtoset = ["forced_initial_RLO", "forced_initial_RLO", "initial_MT"]
for grid in grids:
new_detected_initial_RLO = get_detected_initial_RLO(grid)
for new_sys in new_detected_initial_RLO:
exists_already = False
for i, sys in enumerate(detected_initial_RLO):
# check whether there are double entries
if (abs(sys["star_1_mass"]-new_sys["star_1_mass"])<1.0e-5 and
abs(sys["star_2_mass"]-new_sys["star_2_mass"])<1.0e-5):
exists_already = True
# if so, replace old entry if the new one has a larger period
if sys["period_days"]<new_sys["period_days"]:
detected_initial_RLO[i] = new_sys.copy()
# add non existing new entry
if not exists_already:
detected_initial_RLO.append(new_sys)
say("Opening new file...")
# open new HDF5 file and start copying runs
driver_args = {} if "%d" not in output_path else {
"driver": "family", "memb_size": HDF5_MEMBER_SIZE}
# prepare for loss-less compression
compression = newconfig["compression"]
compression = "" if compression is None else compression.lower()
if compression == "":
compression_args = {}
elif compression == "lzf":
compression_args = {"compression": "lzf"}
elif compression.startswith("gzip"):
if compression == "gzip":
compression_args = {"compression": "gzip"}
else:
if len(compression) > 5 or not compression[4].isdigit():
raise ValueError("GZIP compression level must be 0-9.")
compression_level = int(compression[4])
compression_args = {"compression": "gzip",
"compression_opts": compression_level}
else:
raise ValueError("Unknown compression `{}`.".format(compression))
with h5py.File(output_path, "w", **driver_args) as new_grid:
say("Copying runs...")
new_mesa_dirs = []
new_initial_values = []
new_final_values = []
new_index = 0
for grid_index, run_index in initial_params.values():
grid = grids[grid_index]
new_mesa_dirs.append(grid.MESA_dirs[run_index])
new_initial_values.append(grid.initial_values[run_index])
new_final_values.append(grid.final_values[run_index])
if (newconfig["initial_RLO_fix"]):
flag1 = new_final_values[-1]["termination_flag_1"]
if (flag1 != "Terminate because of overflowing initial model"
and flag1 != "forced_initial_RLO"):
mass1 = new_initial_values[-1]["star_1_mass"]
mass2 = new_initial_values[-1]["star_2_mass"]
period = new_initial_values[-1]["period_days"]
nearest = get_nearest_known_initial_RLO(mass1, mass2,
detected_initial_RLO)
if period < nearest["period_days"]:
# set values
for colname, value in zip(colnames, valtoset):
new_final_values[-1][colname] = value
# copy values from nearest known system
for colname in ["termination_flag_3",
"termination_flag_4"]:
if colname in nearest:
new_final_values[-1][colname]=nearest[colname]
for subarray in ['binary_history', 'history1', 'history2',
'final_profile1', 'final_profile2']:
# ensure group is created even if no data to be written
new_grp = "/grid/run{}/".format(new_index)
if new_grp not in new_grid:
new_grid.create_group(new_grp)
# now copy the data
new_key = "/grid/run{}/{}".format(new_index, subarray)
old_key = "/grid/run{}/{}".format(run_index, subarray)
try:
old_data = grid.hdf5[old_key]
new_grid.create_dataset(new_key, data=old_data,
**compression_args)
except KeyError:
pass
new_index += 1
say("Writing initial/final values and metadata...")
new_mesa_dirs = np.array(new_mesa_dirs, dtype=H5_UNICODE_DTYPE)
new_initial_values = np.array(new_initial_values, dtype=initial_dtype)
new_final_dtype = []
for dtype in final_dtype.descr:
if (dtype[0].startswith("termination_flag") or
("SN_type" in dtype[0]) or ("_state" in dtype[0]) or
("_class" in dtype[0])):
dtype = (dtype[0], H5_REC_STR_DTYPE.replace("U", "S"))
new_final_dtype.append(dtype)
new_final_values = np.array(new_final_values, dtype=new_final_dtype)
new_grid.attrs["config"] = json.dumps(str(dict(newconfig)))
new_grid.create_dataset("relative_file_paths", data=new_mesa_dirs,
**compression_args)
new_grid.create_dataset("/grid/initial_values",
data=new_initial_values,
**compression_args)
new_grid.create_dataset("/grid/final_values",
data=new_final_values,
**compression_args)
say("Grids have been successfully joined.")