"""Module for post-processing POSYDON grids."""
from posydon.binary_evol.binarystar import BinaryStar
from posydon.binary_evol.singlestar import SingleStar
from posydon.binary_evol.SN.step_SN import StepSN
from posydon.binary_evol.flow_chart import STAR_STATES_CC
from posydon.utils.common_functions import (
calculate_Patton20_values_at_He_depl,
CEE_parameters_from_core_abundance_thresholds,
check_state_of_star)
from posydon.grids.MODELS import MODELS
from posydon.visualization.combine_TF import combine_TF12, TF1_POOL_STABLE
from posydon.visualization.plot_defaults import DEFAULT_MARKERS_COLORS_LEGENDS
import numpy as np
from tqdm import tqdm
import copy
from posydon.utils.posydonwarning import (Pwarn, Catch_POSYDON_Warnings)
__authors__ = [
"Simone Bavera <Simone.Bavera@unige.ch>",
"Emmanouil Zapartas <ezapartas@gmail.com>",
"Matthias Kruckow <Matthias.Kruckow@unige.ch>",
]
__credits__ = [
'Konstantinos Kovlakas <kkovlakas@physics.uoc.gr>'
]
CC_quantities = ['state', 'SN_type', 'f_fb', 'mass', 'spin',
'm_disk_accreted', 'm_disk_radiated', 'CO_interpolation_class',
'M4', 'mu4',
'h1_mass_ej', 'he4_mass_ej']
[docs]
def assign_core_collapse_quantities_none(EXTRA_COLUMNS, star_i, MODEL_NAME=None):
""""Assign None values to all core collapse properties."""
if MODEL_NAME is None:
for MODEL_NAME, MODEL in MODELS.items():
for quantity in CC_quantities:
EXTRA_COLUMNS[f'S{star_i}_{MODEL_NAME}_{quantity}'].append(None)
else:
for quantity in CC_quantities:
EXTRA_COLUMNS[f'S{star_i}_{MODEL_NAME}_{quantity}'].append(None)
[docs]
def print_CC_quantities(EXTRA_COLUMNS, star, MODEL_NAME=None):
format_string = "{:<50} {:<33} {:12} {:10} {:15} {:10} {:25} {:25} {:25} {:25} {:25} {:25}"
format_val_preSN = "{:<50} {:<33} {:12} {:10} {:7.2f} {:12.2f} {:25} {:25} {:25} {:25} {:25} {:25}"
format_val = "{:<50} {:<33} {:12} {:1.2f} {:13.2f} {:12.2f} {:20.2f} {:20.2f} {:20.2f} {:20.2f} {:20.2f} {:20.2f}"
if MODEL_NAME is None:
print('')
print(format_string.format(
"mechanism", "state", "SN type", "f_fb",
"mass [Msun]", "spin", "m_disk_accreted [Msun]",
"m_disk_radiated [Msun]", "M4 [m/Msun]", "mu4 [(dm/Msun)/(dr/1000km)]",
"h1_mass_ej [Msun]", "he4_mass_ej [Msun]"))
print('')
try:
print(format_val_preSN.format(
'PRE SN STAR', star.state, '',
'', star.mass, star.spin, '', '', '', '', '', ''))
except Exception as e:
Pwarn("Failed to print star values!\nWarning in preSN: "+\
"{}".format(e), "InappropriateValueWarning")
print('')
else:
try:
checked_quantities_for_None = {}
for quantity in ["spin", "M4", "mu4", "h1_mass_ej", "he4_mass_ej"]:
if getattr(star, quantity)==None:
checked_quantities_for_None[quantity] = np.nan
else:
checked_quantities_for_None[quantity] = getattr(star, quantity)
print(format_val.format(MODEL_NAME,
star.state, star.SN_type, star.f_fb,
star.mass, checked_quantities_for_None["spin"], star.m_disk_accreted,
star.m_disk_radiated, checked_quantities_for_None["M4"], checked_quantities_for_None["mu4"],
checked_quantities_for_None["h1_mass_ej"], checked_quantities_for_None["he4_mass_ej"]))
except Exception as e:
Pwarn("Failed to print star values!\nWarning in "+\
"{}: {}".format(MODEL_NAME, e), "InappropriateValueWarning")
[docs]
def post_process_grid(grid, index=None, star_2_CO=True, MODELS=MODELS,
single_star=False, verbose=False):
"""Compute post processed quantity of any grid.
This function post processes any supported grid and computes:
- Core collapse quantities for 5 prescriptions given the fiducial POSYDON
assumption given in MODEL plus:
A: direct collapse
B: Fryer+12-rapid
C: Fryer+12-delayed
D: Sukhbold+16-engine, N20
E: Patton&Sukhbold20-engine, N20
for each prescrition we store the compact object state (WD/NS/BH),
SN type (WD, ECSN, CCSN, PISN, PPISN), fallback mass fraction f_gb,
compact object mass and spin.
- Core masses at he-depletion (used in Patton core collapse)
- Mass envelopes for common envelope step.
Parameters
----------
grid : PSyGrid
MESA grid in PSyGrid format.
index : None, touple or int
If None, loop over all indicies otherwise provide a range, e.g. [10,20]
or a index, e.g. 42.
star_2_CO : bool
If 'False' star 2 is not a compact object.
MODELS : list of dict
List of supported core collapse model assumptions.
single_star : bool
If `True` the PSyGrid contains single stars.
verbose : bool
If `True` print the results of each core collapse on screen.
Returns
-------
MESA_dirs: list
List containing the path to each run corresponding to the post
processed values. This is used to ensure one to one mapping when
appending the extra columns back to a grid.
EXTRA_COLUMNS: dict
Dictionary containing all post processed quantities.
"""
EXTRA_COLUMNS = {}
for star in [1, 2]:
# core masses at He depletion. stellar states and composition
for quantity in ['avg_c_in_c_core_at_He_depletion',
'co_core_mass_at_He_depletion',
'state', 'surface_other', 'center_other']:
EXTRA_COLUMNS[f'S{star}_{quantity}'] = []
# common envelope quantities
for quantity in ['lambda_CE', 'm_core_CE', 'r_core_CE']:
for val in [1, 10, 30, 'pure_He_star_10']:
EXTRA_COLUMNS[f'S{star}_{quantity}_{val}cent'] = []
# Core collapse qunatities: [state, SN_type, f_fb, mass, spin]
for MODEL_NAME, MODEL in MODELS.items():
for quantity in CC_quantities:
EXTRA_COLUMNS[f'S{star}_{MODEL_NAME}_{quantity}'] = []
# remove star 2 columns in case of single star grid
if single_star:
for key in list(EXTRA_COLUMNS.keys()):
if 'S2' in key:
del EXTRA_COLUMNS[key]
# loop over all gird, index or range
if index is None:
indicies = range(len(grid.MESA_dirs))
MESA_dirs = grid.MESA_dirs
elif isinstance(index, int):
indicies = range(index, index+1)
MESA_dirs = grid.MESA_dirs[index:index+1]
elif isinstance(index, list):
if len(index) != 2:
raise ValueError('Index range should have dim=2!')
indicies = range(index[0], index[1])
MESA_dirs = grid.MESA_dirs[index[0]:index[1]]
for i in tqdm(indicies):
if not single_star:
# initilise binary
binary = BinaryStar.from_run(grid[i], history=True, profiles=True)
stars = [binary.star_1, binary.star_2]
stars_CO = [False, star_2_CO]
interpolation_class = grid.final_values['interpolation_class'][i]
IC = grid.final_values['interpolation_class'][i]
TF2 = grid.final_values['termination_flag_2'][i]
else:
star = SingleStar.from_run(grid[i], history=True, profile=True)
stars = [star]
stars_CO = [False]
IC = 'no_MT'
TF2 = 'no_RLOF'
TF1 = grid.final_values['termination_flag_1'][i]
# compute properties
for j, star in enumerate(stars):
if not stars_CO[j] and IC in ['no_MT', 'stable_MT', 'unstable_MT',
'stable_reverse_MT']:
# stellar states
EXTRA_COLUMNS['S%s_state' % (j+1)].append(check_state_of_star(
star, star_CO=False))
# core masses at he depletion
with Catch_POSYDON_Warnings(record=True) as cpw:
if ((star.avg_c_in_c_core_at_He_depletion is None) or
(star.co_core_mass_at_He_depletion is None)):
calculate_Patton20_values_at_He_depl(star)
EXTRA_COLUMNS[f'S{j+1}_avg_c_in_c_core_at_He_depletion'].append(
star.avg_c_in_c_core_at_He_depletion)
EXTRA_COLUMNS[f'S{j+1}_co_core_mass_at_He_depletion'].append(
star.co_core_mass_at_He_depletion)
# CE quantities
with Catch_POSYDON_Warnings(record=True) as cpw:
try:
CEE_parameters_from_core_abundance_thresholds(star)
except Exception as ex:
print(ex)
print(f'The exception was raised by {grid.MESA_dirs[i]} '
f'in CEE_parameters_from_core_abundance_thresholds(star_{j+1}).')
for quantity in ['lambda_CE', 'm_core_CE', 'r_core_CE']:
for val in [1, 10, 30, 'pure_He_star_10']:
EXTRA_COLUMNS[f'S{j+1}_{quantity}_{val}cent'].append(
getattr(star, f'{quantity}_{val}cent'))
# aboundances
try:
s_o = (1. - star.surface_h1 - star.surface_he4 - star.surface_c12
- star.surface_n14 - star.surface_o16)
c_o = (1. - star.center_h1 - star.center_he4 - star.center_c12
- star.center_n14 - star.center_o16)
except TypeError as ex:
s_o = 0.
c_o = 0.
print(ex)
print(f'The error was raised by {grid.MESA_dirs[i]} '
f'while accessing aboundances in star_{j+1}.')
EXTRA_COLUMNS['S%s_surface_other' % (j+1)].append(s_o)
EXTRA_COLUMNS['S%s_center_other' % (j+1)].append(c_o)
else:
# fill everything with Nones
if IC == 'initial_MT' or IC == 'not_converged':
EXTRA_COLUMNS['S%s_state' % (j+1)].append(None)
else:
# CO states are classified and used in mesa step
try:
EXTRA_COLUMNS['S%s_state' % (j+1)].append(check_state_of_star(star, star_CO=True))
except TypeError as ex:
EXTRA_COLUMNS['S%s_state' % (j+1)].append(None)
print(ex)
print(f'The error was raised by {grid.MESA_dirs[i]} '
f'in check_state_of_star(star_{j+1}) with IC={IC}.')
for quantity in ['avg_c_in_c_core_at_He_depletion', 'co_core_mass_at_He_depletion',
'surface_other', 'center_other', 'lambda_CE', 'm_core_CE', 'r_core_CE']:
if 'CE' in quantity:
for val in [1, 10, 30, 'pure_He_star_10']:
EXTRA_COLUMNS[f'S{j+1}_{quantity}_{val}cent'].append(None)
else:
EXTRA_COLUMNS[f'S{j+1}_{quantity}'].append(None)
# core collapse quantities
if not single_star:
if interpolation_class in ['no_MT', 'stable_MT',
'stable_reverse_MT']:
if (star_2_CO or (TF1 in TF1_POOL_STABLE and
('primary' in TF1 or 'Primary' in TF1))):
star = binary.star_1
star_i = 1
assign_core_collapse_quantities_none(EXTRA_COLUMNS, 2)
elif (TF1 in TF1_POOL_STABLE and
('secondary' in TF1 or 'Secondary' in TF1)):
star = binary.star_2
star_i = 2
assign_core_collapse_quantities_none(EXTRA_COLUMNS, 1)
elif TF1 == 'gamma_center_limit':
if (binary.star_1.center_gamma is not None and
binary.star_1.center_gamma >= 10.):
star = binary.star_1
star_i = 1
assign_core_collapse_quantities_none(EXTRA_COLUMNS, 2)
elif (binary.star_2.center_gamma is not None and
binary.star_2.center_gamma >= 10.):
star = binary.star_2
star_i = 2
assign_core_collapse_quantities_none(EXTRA_COLUMNS, 1)
else:
assign_core_collapse_quantities_none(EXTRA_COLUMNS, 1)
assign_core_collapse_quantities_none(EXTRA_COLUMNS, 2)
Pwarn(f'{grid.MESA_dirs[i]} ended with '
'TF1=gamma_center_limit however the star has '
'center_gamma < 10. This star cannot go through '
'step_SN appending NONE compact object '
'properties!', "InappropriateValueWarning")
continue
else:
assign_core_collapse_quantities_none(EXTRA_COLUMNS, 1)
assign_core_collapse_quantities_none(EXTRA_COLUMNS, 2)
Pwarn(f'{grid.MESA_dirs[i]} ended with TF={TF1} and '
f'IC={interpolation_class}. This star cannot go '
'through step_SN appending NONE compact object '
'properties!', "InappropriateValueWarning")
continue
if star.state in STAR_STATES_CC:
if verbose:
print_CC_quantities(EXTRA_COLUMNS, star)
for MODEL_NAME, MODEL in MODELS.items():
mechanism = MODEL['mechanism']+MODEL['engine']
SN = StepSN(**MODEL, allow_spin_None=True)
star_copy = copy.copy(star)
try:
flush = False
SN.collapse_star(star_copy)
for quantity in CC_quantities:
if quantity in ['state', 'SN_type']:
if not isinstance(getattr(star_copy, quantity), str):
flush = True
Pwarn(f'{MODEL_NAME} {mechanism} {quantity} is not a string!', "InappropriateValueWarning")
elif quantity != 'CO_interpolation_class':
if quantity in ['spin', 'M4', 'mu4', "h1_mass_ej", "he4_mass_ej"]:
if ((not isinstance(getattr(star_copy, quantity), float))
and (getattr(star_copy, quantity) != None)):
flush = True
Pwarn(f'{MODEL_NAME} {mechanism} {quantity} is not a float nor None!', "InappropriateValueWarning")
elif not isinstance(getattr(star_copy, quantity), float):
flush = True
Pwarn(f'{MODEL_NAME} {mechanism} {quantity} is not a float!', "InappropriateValueWarning")
except Exception as e:
flush = True
if verbose:
print('')
print(f'Error during {MODEL_NAME} {mechanism} core collapse prescrition!')
print(e)
print('TF1:', TF1)
print('interpolation class:', interpolation_class)
print('run directory:', grid.MESA_dirs[i])
print('')
if flush:
assign_core_collapse_quantities_none(EXTRA_COLUMNS, star_i, MODEL_NAME)
else:
for quantity in CC_quantities:
if quantity != 'CO_interpolation_class':
EXTRA_COLUMNS[f'S{star_i}_{MODEL_NAME}_{quantity}'].append(
getattr(star_copy, quantity))
else:
if getattr(star_copy, 'state') == 'BH' and 'case' in TF2 and '1' in TF2 and '2' in TF2:
EXTRA_COLUMNS[f'S{star_i}_{MODEL_NAME}_{quantity}'].append(
getattr(star_copy, 'state')+'_reverse_MT')
else:
EXTRA_COLUMNS[f'S{star_i}_{MODEL_NAME}_{quantity}'].append(
getattr(star_copy, 'state'))
if verbose:
print_CC_quantities(EXTRA_COLUMNS, star_copy, f'{MODEL_NAME}_{mechanism}')
else:
# star not explodable
assign_core_collapse_quantities_none(EXTRA_COLUMNS, star_i)
else:
# inital_RLOF, unstable_MT not_converged
assign_core_collapse_quantities_none(EXTRA_COLUMNS, 1)
assign_core_collapse_quantities_none(EXTRA_COLUMNS, 2)
else:
if star.state in STAR_STATES_CC:
if verbose:
print_CC_quantities(EXTRA_COLUMNS, star)
for MODEL_NAME, MODEL in MODELS.items():
mechanism = MODEL['mechanism']+MODEL['engine']
SN = StepSN(**MODEL, allow_spin_None=True)
star_copy = copy.copy(star)
try:
flush = False
SN.collapse_star(star_copy)
for quantity in CC_quantities:
if quantity in ['state', 'SN_type']:
if not isinstance(getattr(star_copy, quantity), str):
flush = True
Pwarn(f'{MODEL_NAME} {mechanism} {quantity} is not a string!', "InappropriateValueWarning")
elif quantity != 'CO_interpolation_class':
if quantity in ['spin', 'M4', 'mu4', "h1_mass_ej", "he4_mass_ej"]:
if ((not isinstance(getattr(star_copy, quantity), float))
and (getattr(star_copy, quantity) != None)):
flush = True
Pwarn(f'{MODEL_NAME} {mechanism} {quantity} is not a float nor None!', "InappropriateValueWarning")
elif not isinstance(getattr(star_copy, quantity), float):
flush = True
Pwarn(f'{MODEL_NAME} {mechanism} {quantity} is not a float!', "InappropriateValueWarning")
except Exception as e:
flush = True
if verbose:
print('')
print(f'Error during {MODEL_NAME} {mechanism} core collapse prescrition!')
print(e)
print('TF1:', TF1)
print('interpolation class:', interpolation_class)
print('run directory:', grid.MESA_dirs[i])
print('')
if flush:
assign_core_collapse_quantities_none(EXTRA_COLUMNS, 1, MODEL_NAME)
else:
for quantity in CC_quantities:
if quantity != 'CO_interpolation_class':
EXTRA_COLUMNS[f'S1_{MODEL_NAME}_{quantity}'].append(
getattr(star_copy, quantity))
else:
if getattr(star_copy, 'state') == 'BH' and 'case' in TF2 and '1' in TF2 and '2' in TF2:
EXTRA_COLUMNS[f'S1_{MODEL_NAME}_{quantity}'].append(
getattr(star_copy, 'state')+'_reverse_MT')
else:
EXTRA_COLUMNS[f'S1_{MODEL_NAME}_{quantity}'].append(
getattr(star_copy, 'state'))
if verbose:
print_CC_quantities(EXTRA_COLUMNS, star_copy, f'{MODEL_NAME}_{mechanism}')
else:
assign_core_collapse_quantities_none(EXTRA_COLUMNS, 1)
# check dataset completeness
n_control = len(EXTRA_COLUMNS['S1_state'])
for key in EXTRA_COLUMNS.keys():
if n_control != len(EXTRA_COLUMNS[key]):
raise ValueError(
'%s has not the correct dimension! Error occoured after '
'collapsing binary index=%s' % (key, i))
# add MT history column by combining TF1 and TF2
if not single_star:
interp_class = grid.final_values['interpolation_class']
TF2 = grid.final_values['termination_flag_2']
combined_TF12 = combine_TF12(interp_class, TF2)
mt_history = [DEFAULT_MARKERS_COLORS_LEGENDS['combined_TF12'][TF12][3] for TF12 in combined_TF12]
EXTRA_COLUMNS['mt_history'] = mt_history
# to avoid confusion rename core-collaspe compact object state "MODEL_NAME_state"
# to "MODEL_NAME_CO_type"
for MODEL_NAME in MODELS.keys():
EXTRA_COLUMNS[f'S1_{MODEL_NAME}_CO_type'] = EXTRA_COLUMNS.pop(
f'S1_{MODEL_NAME}_state')
if f'S2_{MODEL_NAME}_state' in EXTRA_COLUMNS:
EXTRA_COLUMNS[f'S2_{MODEL_NAME}_CO_type'] = EXTRA_COLUMNS.pop(
f'S2_{MODEL_NAME}_state')
return MESA_dirs, EXTRA_COLUMNS
[docs]
def add_post_processed_quantities(grid, MESA_dirs_EXTRA_COLUMNS, EXTRA_COLUMNS,
verbose=False):
"""Append post processed quantity to a grid.
This function appends the quantities computed in post_process_grid to any
grid. Note that this function ensures you can append the quantities only if
the grid follows the order of MESA_dirs_EXTRA_COLUMNS.
Parameters
----------
grid : PSyGrid
MESA grid in PSyGrid format.
MESA_dirs: list
List containing the path to each run corresponding to the post
processed values. This is used to ensure one to one mapping when
appending the extra columns back to a grid.
EXTRA_COLUMNS: dict
Dictionary containing all post processed quantities.
verbose : bool
If `True` print the results of each core collapse on screen.
"""
# check correspondance of EXTRA_COLUMNS with grid
if not np.all(np.array(grid.MESA_dirs)
== np.array(MESA_dirs_EXTRA_COLUMNS)):
raise ValueError(
'EXTRA_COLUMNS do not follow the correct order of grid!')
for column in EXTRA_COLUMNS.keys():
if (("state" in column) or ("type" in column) or ("class" in column)
or (column == 'mt_history')):
values = np.asarray(EXTRA_COLUMNS[column], str)
else:
values = np.asarray(EXTRA_COLUMNS[column], float)
grid.add_column(column, values, overwrite=True)