Source code for posydon.binary_evol.DT.step_detached

"""Detached evolution step."""


__authors__ = [
    "Devina Misra <devina.misra@unige.ch>",
    "Zepei Xing <Zepei.Xing@unige.ch>",
    "Emmanouil Zapartas <ezapartas@gmail.com>",
    "Nam Tran <tranhn03@gmail.com>",
    "Simone Bavera <Simone.Bavera@unige.ch>",
    "Konstantinos Kovlakas <Konstantinos.Kovlakas@unige.ch>",
    "Kyle Akira Rocha <kylerocha2024@u.northwestern.edu>",
    "Jeffrey Andrews <jeffrey.andrews@northwestern.edu>",
    "Camille Liotine <cliotine@u.northwestern.edu>",
]

import os
import numpy as np
import pandas as pd
import time
from scipy.integrate import solve_ivp
from scipy.interpolate import PchipInterpolator
from scipy.optimize import minimize
from scipy.optimize import root

from posydon.utils.data_download import PATH_TO_POSYDON_DATA
from posydon.binary_evol.binarystar import BINARYPROPERTIES
from posydon.binary_evol.singlestar import STARPROPERTIES
from posydon.interpolation.interpolation import GRIDInterpolator
from posydon.interpolation.data_scaling import DataScaler
from posydon.utils.common_functions import (
    bondi_hoyle,
    orbital_period_from_separation,
    roche_lobe_radius,
    check_state_of_star,
    PchipInterpolator2,
    convert_metallicity_to_string,
    set_binary_to_failed,
)
from posydon.binary_evol.flow_chart import (
    STAR_STATES_CC, 
    STAR_STATES_CO, 
    STAR_STATES_H_RICH_EVOLVABLE,
    STAR_STATES_HE_RICH_EVOLVABLE,
    )
import posydon.utils.constants as const
from posydon.utils.posydonerror import NumericalError, MatchingError, POSYDONError, FlowError, ClassificationError
from posydon.utils.posydonwarning import Pwarn

LIST_ACCEPTABLE_STATES_FOR_HMS = ["H-rich_Core_H_burning", "accreted_He_Core_H_burning"]

LIST_ACCEPTABLE_STATES_FOR_postMS = [
    "H-rich_Shell_H_burning",
    "H-rich_Core_He_burning",
    "H-rich_Central_He_depleted",
    "H-rich_Core_C_burning",
    "H-rich_Central_C_depletion",
    "H-rich_non_burning",
    "accreted_He_non_burning"]

LIST_ACCEPTABLE_STATES_FOR_HeStar = [
    'accreted_He_Core_He_burning',
    'stripped_He_Core_He_burning',
    'stripped_He_Shell_He_burning',     # includes stars burning C in core
    'stripped_He_Central_He_depleted',  # includes stars burning C in core
    'stripped_He_Central_C_depletion',
    'stripped_He_non_burning'
    ]

STAR_STATES_H_RICH = [
    'H-rich_Core_H_burning',
    'H-rich_Core_He_burning',
    'H-rich_Shell_H_burning',
    'H-rich_Central_He_depleted',
    'H-rich_Shell_He_burning',
    'H-rich_Core_C_burning',
    'H-rich_Central_C_depletion',
    'H-rich_non_burning',
    'accreted_He_Core_H_burning',
    'accreted_He_non_burning'
]


DEFAULT_TRANSLATION = {
    "time": "time",
    "orbital_period": "porb",
    "eccentricity": "ecc",
    "separation": "sep",
    "state": None,
    "event": None,
    "rl_relative_overflow_1": "rl_relative_overflow_1",
    "rl_relative_overflow_2": "rl_relative_overflow_2",
    "lg_mtransfer_rate": "lg_mtransfer_rate",
    "V_sys": None,
    "mass": "mass",
    "log_R": "log_R",
    "R": "R",
    "lg_mdot": "mdot",
    "log_L": "log_L",
    "lg_wind_mdot": "mdot",
    "lg_system_mdot": "lg_mdot",
    "he_core_mass": "he_core_mass",
    "he_core_radius": "he_core_radius",
    "c_core_mass": "c_core_mass",
    "c_core_radius": "c_core_radius",
    "o_core_mass": "o_core_mass",
    "o_core_radius": "o_core_radius",
    "center_h1": "center_h1",
    "center_he4": "center_he4",
    "center_c12": "center_c12",
    "center_o16": "center_o16",
    "center_n14": "center_n14",
    "surface_h1": "surface_h1",
    "surface_he4": "surface_he4",
    "surface_c12": "surface_c12",
    "surface_n14": "surface_n14",
    "surface_o16": "surface_o16",
    "center_gamma": "center_gamma",
    "log_LH": "log_LH",
    "log_LHe": "log_LHe",
    "log_LZ": "log_LZ",
    "log_Lnuc": "log_Lnuc",
    "c12_c12": "c12_c12",
    "avg_c_in_c_core": "avg_c_in_c_core",
    "surf_avg_omega_div_omega_crit": "surf_avg_omega_div_omega_crit",
    "surf_avg_omega": "omega",
    "total_moment_of_inertia": "inertia",
    "log_total_angular_momentum": "log_total_angular_momentum",
    "profile": None,
    "metallicity": None,
    "spin": "spin_parameter",
    "conv_env_top_mass": "conv_env_top_mass",
    "conv_env_bot_mass": "conv_env_bot_mass",
    "conv_env_top_radius": "conv_env_top_radius",
    "conv_env_bot_radius": "conv_env_bot_radius",
    "conv_env_turnover_time_g": "conv_env_turnover_time_g",
    "conv_env_turnover_time_l_b": "conv_env_turnover_time_l_b",
    "conv_env_turnover_time_l_t": "conv_env_turnover_time_l_t",
    "envelope_binding_energy": "envelope_binding_energy",
    "mass_conv_reg_fortides": "mass_conv_reg_fortides",
    "thickness_conv_reg_fortides": "thickness_conv_reg_fortides",
    "radius_conv_reg_fortides": "radius_conv_reg_fortides",
    "lambda_CE_1cent": "lambda_CE_1cent",
    "lambda_CE_10cent": "lambda_CE_10cent",
    "lambda_CE_30cent": "lambda_CE_30cent",
    "co_core_mass": "co_core_mass",
    "co_core_radius": "co_core_radius",
    "lambda_CE_pure_He_star_10cent": "lambda_CE_pure_He_star_10cent",
    "trap_radius": "trap_radius",
    "acc_radius": "acc_radius",
    "t_sync_rad_1": "t_sync_rad_1",
    "t_sync_conv_1": "t_sync_conv_1",
    "t_sync_rad_2": "t_sync_rad_2",
    "t_sync_conv_2": "t_sync_conv_2",
    "mass_transfer_case": None,
    "nearest_neighbour_distance": None,
}


DEFAULT_TRANSLATED_KEYS = (
    'age',
    'mass',
    'mdot',
    'inertia',
    'conv_mx1_top_r',
    'conv_mx1_bot_r',
    'surface_h1',
    'center_h1',
    'mass_conv_reg_fortides',
    'thickness_conv_reg_fortides',
    'radius_conv_reg_fortides',
    'log_Teff',
    'surface_he3',
    'surface_he4',
    'center_he4',
    'avg_c_in_c_core',
    'log_LH',
    'log_LHe',
    'log_LZ',
    'log_Lnuc',
    'c12_c12',
    'center_c12',
    'he_core_mass',
    'log_L',
    'log_R',
    'c_core_mass',
    'o_core_mass',
    'co_core_mass',
    'c_core_radius',
    'o_core_radius',
    'co_core_radius',
    'spin_parameter',
    'log_total_angular_momentum',
    'center_n14',
    'center_o16',
    'surface_n14',
    'surface_o16',
    'conv_env_top_mass',
    'conv_env_bot_mass',
    'conv_env_top_radius',
    'conv_env_bot_radius',
    'conv_env_turnover_time_g',
    'conv_env_turnover_time_l_b',
    'conv_env_turnover_time_l_t',
    'envelope_binding_energy',
    'lambda_CE_1cent',
    'lambda_CE_10cent',
    'lambda_CE_30cent',
    'lambda_CE_pure_He_star_10cent',
    'center_gamma'
)


DEFAULT_PROFILE_KEYS = (
    'radius',
    'mass',
    'logRho',
    'energy',
    'x_mass_fraction_H',
    'y_mass_fraction_He',
    'z_mass_fraction_metals',
    'neutral_fraction_H',
    'neutral_fraction_He',
    'avg_charge_He'
)

MATCHING_WITH_RELATIVE_DIFFERENCE = ["center_he4"]




[docs] class detached_step: """Evolve a detached binary. The binary will be evolved until Roche-lobe overflow, core-collapse or maximum simulation time, using the standard equations that govern the orbital evolution. Parameters ---------- path : str Path to the directory that contains a HDF5 grid. dt : float The timestep size, in years, to be appended to the history of the binary. None means only the final step. Note: do not select very small timesteps cause it may mess with the solving of the ODE. n_o_steps_history: int Alternatively, we can define the number of timesteps to be appended to the history of the binary. None means only the final step. If both `dt` and `n_o_steps_history` are different than None, `dt` has priority. matching_method: str Method to find the best match between a star from a previous step and a point in a single MIST-like stellar track. Options "root" (which tries to find a root of two matching quantities, and it is possible to not achieve it) or "minimize" (minimizes the sum of squares of differences of various quantities between the previous step and the track). verbose : Boolean True if we want to print stuff. do_wind_loss: Boolean If True, take into account change of separation due to mass loss from the star. do_tides: Booleans If True, take into account change of separation, eccentricity and star spin due to tidal forces. do_gravitational_radiation: Boolean If True, take into account change of separation and eccentricity due to gravitational wave radiation. do_magnetic_braking: Boolean If True, take into account change of star spin due to magnetic braking. magnetic_braking_mode: String A string corresponding to the desired magnetic braking prescription. -- RVJ83: Rappaport, Verbunt, & Joss 1983 -- M15: Matt et al. 2015 -- G18: Garraffo et al. 2018 -- CARB: Van & Ivanova 2019 do_stellar_evolution_and_spin_from_winds: Boolean If True, take into account change of star spin due to change of its moment of inertia during its evolution and due to spin angular momentum loss due to winds. Attributes ---------- KEYS : list of str Contains valid keywords which is used to extract quantities from the grid. grid : GRIDInterpolator Object to interpolate between the time-series in the h5 grid. initial_mass : list of float Contains the initial masses of the stars in the grid. Note ---- A matching between the properties of the star, and the h5 tracks are required. In the "root" solver matching_method, if the root solver fails then the evolution will immediately end, and the binary state will be tagged with "Root solver failed". In the "minimize" matching_method, we minimize the sum of squares of differences of various quantities between the previous step and the h5 track. Warns ----- UserWarning If the call cannot determine the primary or secondary in the binary. Raises ------ Exception If the ode-solver fails to solve the differential equation that governs the orbital evolution. """ def __init__( self, grid_name_Hrich=None, grid_name_strippedHe=None, metallicity=None, path=PATH_TO_POSYDON_DATA, dt=None, n_o_steps_history=None, matching_method="minimize", initial_mass=None, rootm=None, verbose=False, do_wind_loss=True, do_tides=True, do_gravitational_radiation=True, do_magnetic_braking=True, magnetic_braking_mode="RVJ83", do_stellar_evolution_and_spin_from_winds=True, RLO_orbit_at_orbit_with_same_am=False, list_for_matching_HMS=None, list_for_matching_postMS=None, list_for_matching_HeStar=None ): """Initialize the step. See class documentation for details.""" self.metallicity = convert_metallicity_to_string(metallicity) self.dt = dt self.n_o_steps_history = n_o_steps_history self.matching_method = matching_method self.do_wind_loss = do_wind_loss self.do_tides = do_tides self.do_gravitational_radiation = do_gravitational_radiation self.do_magnetic_braking = do_magnetic_braking self.magnetic_braking_mode = magnetic_braking_mode self.do_stellar_evolution_and_spin_from_winds = ( do_stellar_evolution_and_spin_from_winds ) self.RLO_orbit_at_orbit_with_same_am = RLO_orbit_at_orbit_with_same_am self.initial_mass = initial_mass self.rootm = rootm self.verbose = verbose self.list_for_matching_HMS = list_for_matching_HMS self.list_for_matching_postMS = list_for_matching_postMS self.list_for_matching_HeStar = list_for_matching_HeStar # mapping a combination of (key, htrack, method) to a pre-trained # DataScaler instance, created the first time it is requested self.stored_scalers = {} if self.verbose: print( dt, n_o_steps_history, matching_method, do_wind_loss, do_tides, do_gravitational_radiation, do_magnetic_braking, magnetic_braking_mode, do_stellar_evolution_and_spin_from_winds) self.translate = DEFAULT_TRANSLATION # these are the KEYS read from POSYDON h5 grid files (after translating # them to the appropriate columns) self.KEYS = DEFAULT_TRANSLATED_KEYS self.KEYS_POSITIVE = ( 'mass_conv_reg_fortides', 'thickness_conv_reg_fortides', 'radius_conv_reg_fortides' ) self.root_keys = np.array( # for the matching [ "age", "mass", "he_core_mass", "center_h1", "center_he4", "surface_he4", "surface_h1", "log_R", "center_c12" ] ) # keys for the final value interpolation self.final_keys = ( 'avg_c_in_c_core_at_He_depletion', 'co_core_mass_at_He_depletion', 'm_core_CE_1cent', 'm_core_CE_10cent', 'm_core_CE_30cent', 'm_core_CE_pure_He_star_10cent', 'r_core_CE_1cent', 'r_core_CE_10cent', 'r_core_CE_30cent', 'r_core_CE_pure_He_star_10cent' ) # keys for the star profile interpolation self.profile_keys = DEFAULT_PROFILE_KEYS if grid_name_Hrich is None: grid_name_Hrich = os.path.join('single_HMS', self.metallicity+'_Zsun.h5') self.grid_Hrich = GRIDInterpolator(os.path.join(path, grid_name_Hrich)) if grid_name_strippedHe is None: grid_name_strippedHe = os.path.join('single_HeMS', self.metallicity+'_Zsun.h5') self.grid_strippedHe = GRIDInterpolator(os.path.join(path, grid_name_strippedHe)) # Initialize the matching lists: m_min_H = np.min(self.grid_Hrich.grid_mass) m_max_H = np.max(self.grid_Hrich.grid_mass) m_min_He = np.min(self.grid_strippedHe.grid_mass) m_max_He = np.max(self.grid_strippedHe.grid_mass) if self.list_for_matching_HMS is None: self.list_for_matching_HMS = [ ["mass", "center_h1", "log_R", "he_core_mass"], [20.0, 1.0, 2.0, 10.0], ["log_min_max", "min_max", "min_max", "min_max"], [m_min_H, m_max_H], [0, None] ] if self.list_for_matching_postMS is None: self.list_for_matching_postMS = [ ["mass", "center_he4", "log_R", "he_core_mass"], [20.0, 1.0, 2.0, 10.0], ["log_min_max", "min_max", "min_max", "min_max"], [m_min_H, m_max_H], [0, None] ] if self.list_for_matching_HeStar is None: self.list_for_matching_HeStar = [ ["he_core_mass", "center_he4", "log_R"], [10.0, 1.0, 2.0], ["min_max", "min_max", "min_max"], [m_min_He, m_max_He], [0, None] ] # lists of alternative matching # e.g., stars after mass transfer could swell up so that log_R # is not appropriate for matching self.list_for_matching_HMS_alternative = [ ["mass", "center_h1", "he_core_mass"], [20.0, 1.0, 10.0], ["log_min_max", "min_max", "min_max"], [m_min_H, m_max_H], [0, None] ] self.list_for_matching_postMS_alternative = [ ["mass", "center_h1", "he_core_mass"], [20.0, 1.0, 10.0], ["log_min_max", "min_max", "min_max"], [m_min_H, m_max_H], [0, None] ] self.list_for_matching_HeStar_alternative = [ ["he_core_mass", "center_he4", "log_R"], [10.0, 1.0, 2.0], ["min_max", "min_max", "min_max"], [m_min_He, m_max_He], [0, None] ]
[docs] def square_difference(self, x, htrack, mesa_labels, posydon_attributes, colscalers, scales): """Compute the square distance used for scaling.""" result = 0.0 for mesa_label, posy_attr, colscaler, scale_of_mesa_label in zip( mesa_labels, posydon_attributes, colscalers, scales): single_track_value = scale_of_mesa_label.transform( self.get_track_val(mesa_label, htrack, *x)) posydon_value = scale_of_mesa_label.transform(posy_attr) if mesa_label in MATCHING_WITH_RELATIVE_DIFFERENCE: result += ((single_track_value - posydon_value) / posydon_value) ** 2 else: result += (single_track_value - posydon_value) ** 2 return result
[docs] def get_track_val(self, key, htrack, m0, t): """Return a single value from the interpolated time-series. Parameters ---------- key : str Keyword of the required quantity. m0 : float The associated initial mass of the required quantity. t : float The required time in the time-series. Returns ------- float The value of the quantity `key` from a MIST-like track of initial mass `m0` at the time `t0`. """ # htrack as a boolean determines whether H or He grid is used if htrack: grid = self.grid_Hrich else: grid = self.grid_strippedHe try: x = grid.get("age", m0) y = grid.get(key, m0) except ValueError: return np.array(t) * np.nan try: val = np.interp(t, x, y, left=1e99, right=1e99) except ValueError: i_bad = [None] while len(i_bad): i_bad = np.where(np.diff(x) <= 0)[0] x = np.delete(x, i_bad) y = np.delete(y, i_bad) val = np.interp(t, x, y) return val
[docs] def scale(self, key, htrack, method): """Nomarlize quantities in the single star grids to (0,1). Parameters ---------- key : str Keyword of the required quantity. method : str Scalling method in the data normalization class Returns ------- class Data normalization class """ # TODO: why this self.grid? Why not local variable. Should this affect # the whole detached_step instance? # collect all options for the scaler scaler_options = (key, htrack, method) # find if the scaler has already been fitted and return it if so... scaler = self.stored_scalers.get(scaler_options, None) if scaler is not None: return scaler # ... if not, fit a new scaler, and store it for later use grid = self.grid_Hrich if htrack else self.grid_strippedHe self.initial_mass = grid.grid_mass all_attributes = [] for mass in self.initial_mass: for i in grid.get(key, mass): all_attributes.append(i) all_attributes = np.array(all_attributes) scaler = DataScaler() scaler.fit(all_attributes, method=method, lower=0.0, upper=1.0) self.stored_scalers[scaler_options] = scaler return scaler
[docs] def get_root0(self, keys, x, htrack, rs=None): """Get the track in the grid with values closest to the requested ones. Parameters ---------- keys : list of str Contains the keys of the required specific quantities that will be matched in the MIST-like track. x : list of floats, of same length as "keys" Contains the latest values (from a previous POSYDON step) of the quantities of "keys" in the POSYDON SingleStar object. rs : list of floats, same length as "keys" Contains normalization factors to be divided for rescaling x values. Returns ------- list of 2 float values Contains the associated initial mass (in solar units) and the time (in years) such that the time-series of the `keys` at that time has the closest values to `x`. These will become m0, t0 for the later integration during the detached binary evolution. If there is no match then NaNs will be returned instead. """ grid = self.grid_Hrich if htrack else self.grid_strippedHe self.initial_mass = grid.grid_mass n = 0 for mass in grid.grid_mass: n = max(n, len(grid.get("age", mass))) self.rootm = np.inf * np.ones((len(grid.grid_mass), n, len(self.root_keys))) for i, mass in enumerate(grid.grid_mass): for j, key in enumerate(self.root_keys): track = grid.get(key, mass) self.rootm[i, : len(track), j] = track if rs is None: rs = np.ones_like(keys) else: rs = np.asanyarray(rs) x = np.asanyarray(x) idx = np.argmax(np.asanyarray(keys)[:, None] == self.root_keys, axis=1) X = self.rootm[:, :, idx] d = np.linalg.norm((X - x[None, None, :]) / rs[None, None, :], axis=-1) idx = np.unravel_index(d.argmin(), X.shape[:-1]) t = self.rootm[idx][np.argmax("age" == self.root_keys)] m0 = grid.grid_mass[idx[0]] return m0, t
[docs] def match_to_single_star(self, star, htrack): """Get the track in the grid that matches the time and mass of a star. For "root" matching_method, the properties that are matched is always the mass of the secondary star. If the secondary has the state `MS` then the center hydrogen abundance will also be matched otherwise the mass of helium-core will be matched. Parameters ---------- star : SingleStar The star which properties are required to be matched with the single MIST-like grid. Returns ------- list of 2 float values Contains the associated (in solar units) and the time (in years) such that the time-series in the grid matches the properties of the secondary. """ def get_posydon_attributes(list_for_matching, star): list_of_attributes = [] for attr in list_for_matching: list_of_attributes.append(getattr(star, attr)) return list_of_attributes def sq_diff_function(x): return self.square_difference( x, htrack=htrack, mesa_labels=MESA_labels, posydon_attributes=posydon_attributes, colscalers=colscalers, scales=scales) def get_MESA_labels(list_for_matching): MESA_labels = list_for_matching[0] rs = list_for_matching[1] colscalers = list_for_matching[2] bnds = [] for i in range(3, len(list_for_matching)): bnds.append(list_for_matching[i]) if self.verbose: print("Matching parameters and their normalizations:\n", MESA_labels, rs) scales = [] for MESA_label, colscaler in zip(MESA_labels, colscalers): scale_of_attribute = scale(MESA_label, htrack, colscaler) scales.append(scale_of_attribute) return MESA_labels, rs, colscalers, bnds, scales if htrack: self.grid = self.grid_Hrich else: self.grid = self.grid_strippedHe get_root0 = self.get_root0 get_track_val = self.get_track_val matching_method = self.matching_method scale = self.scale initials = None tolerance_matching_integration = 1e-2 tolerance_matching_integration_hard = 1e-1 if self.verbose: print(f"\nMatching process started in detached step for {star.state} star " f"with matching method = {matching_method}") if matching_method == "root": if star.state in LIST_ACCEPTABLE_STATES_FOR_HMS: x0 = get_root0(["center_h1", "mass"], [star.center_h1, star.mass], htrack, rs=[0.7, 300]) sol = root( lambda x: [ get_track_val("center_h1", htrack, *x) - star.center_h1, get_track_val("mass", htrack, *x) - star.mass], x0, method="hybr") else: x0 = get_root0( ["he_core_mass", "mass"], [star.he_core_mass, star.mass], htrack, rs=[11, 300]) sol = root( lambda x: [ get_track_val("he_core_mass", htrack, *x) - star.he_core_mass, get_track_val("mass", htrack, *x) - star.mass], x0, method="hybr") if not sol.success or sol.x[1] < 0: initials = (np.nan, np.nan) else: initials = sol.x elif matching_method == "minimize": if star.state in LIST_ACCEPTABLE_STATES_FOR_HMS: list_for_matching = self.list_for_matching_HMS elif star.state in LIST_ACCEPTABLE_STATES_FOR_postMS: list_for_matching = self.list_for_matching_postMS elif star.state in LIST_ACCEPTABLE_STATES_FOR_HeStar: list_for_matching = self.list_for_matching_HeStar MESA_labels, rs, colscalers, bnds, scales = get_MESA_labels(list_for_matching) for i in MESA_labels: if i not in self.root_keys: raise AttributeError(f"Expected matching parameter {i} not added in the single star grid options.") posydon_attributes = get_posydon_attributes(MESA_labels, star) x0 = get_root0(MESA_labels, posydon_attributes, htrack, rs=rs) sol = minimize(sq_diff_function, x0, method="TNC", bounds=bnds) ## Alternative matching attempts if default matching fails! # 1st attempt: use a different minimization method if (np.abs(sol.fun) > tolerance_matching_integration or not sol.success): if self.verbose: print("\nAlternative matching started (1st attempt) " "because previous attempt was unsuccessful:\n", f"tolerance {np.abs(sol.fun)} > {tolerance_matching_integration}", f"or sol.success = {sol.success}") print("(Now trying an alternative minimization method)") sol = minimize(sq_diff_function, x0, method="Powell") # 2nd attempt: use alternative matching parameters if (np.abs(sol.fun) > tolerance_matching_integration or not sol.success): if self.verbose: print("\nAlternative matching started (2nd attempt) " "because previous attempt was unsuccessful:\n", f"tolerance {np.abs(sol.fun)} > {tolerance_matching_integration}", f"or sol.success = {sol.success}") print("(Now trying to match with alternative parameters)") if star.state in LIST_ACCEPTABLE_STATES_FOR_HMS: list_for_matching = self.list_for_matching_HMS_alternative elif star.state in LIST_ACCEPTABLE_STATES_FOR_postMS: list_for_matching = (self.list_for_matching_postMS_alternative) elif star.state in LIST_ACCEPTABLE_STATES_FOR_HeStar: list_for_matching = (self.list_for_matching_HeStar_alternative) MESA_labels, rs, colscalers, bnds, scales = get_MESA_labels(list_for_matching) posydon_attributes = get_posydon_attributes(MESA_labels, star) x0 = get_root0(MESA_labels, posydon_attributes, htrack, rs=rs) sol = minimize(sq_diff_function, x0, method="TNC", bounds=bnds) # 3rd attempt: match an He-star with an H-rich grid, or vice versa (not applicable for HMS stars) if (np.abs(sol.fun) > tolerance_matching_integration or not sol.success): if (star.state in LIST_ACCEPTABLE_STATES_FOR_HeStar or star.state in LIST_ACCEPTABLE_STATES_FOR_postMS): Pwarn("Attempting to match an He-star with an H-rich grid or post-MS star with a" " stripped-He grid", "EvolutionWarning") if self.verbose: print("\nAlternative matching started (3rd attempt) " "because previous attempt was unsuccessful:\n", f"tolerance {np.abs(sol.fun)} > {tolerance_matching_integration}", f"or sol.success = {sol.success}") print("(Now trying to match star to a different grid)") if star.state in LIST_ACCEPTABLE_STATES_FOR_HeStar: htrack = True list_for_matching = self.list_for_matching_HeStar elif star.state in LIST_ACCEPTABLE_STATES_FOR_postMS: htrack = False list_for_matching = self.list_for_matching_postMS MESA_labels, rs, colscalers, bnds, scales = get_MESA_labels(list_for_matching) for i in MESA_labels: if i not in self.root_keys: raise AttributeError(f"Expected matching parameter {i} not added " "in the single star grid options.") posydon_attributes = get_posydon_attributes(MESA_labels, star) x0 = get_root0(MESA_labels, posydon_attributes, htrack, rs=rs) try: sol = minimize(sq_diff_function, x0, method="TNC", bounds=bnds) except: raise NumericalError("SciPy numerical differentiation occured outside boundary " "while matching to single star track") # if matching is still not successful, set result to NaN: if (np.abs(sol.fun) > tolerance_matching_integration_hard or not sol.success): if self.verbose: print("\nMatching result is NOT successful, with tolerance ", np.abs(sol.fun), ">", tolerance_matching_integration_hard) initials = (np.nan, np.nan) elif np.abs(sol.fun) < tolerance_matching_integration_hard: if self.verbose: print("\nMatching result is considered successful, with tolerance " f'{np.abs(sol.fun):.8f}', "<", tolerance_matching_integration_hard) initials = sol.x if self.verbose: if not np.isnan(initials[0]): print( "Matching completed for", star.state, "star!\n" f"Matched to track with intial mass m0 = {initials[0]:.3f} [Msun]" f" at time t0 = {initials[1]/1e6:.3f} [Myrs] \n", "and m(t0), log10(R(t0), center_he(t0), surface_he4(t0), " "surface_h1(t0), he_core_mass(t0), center_c12(t0) = \n", f'{self.get_track_val("mass", htrack, *sol.x):.3f}', f'{self.get_track_val("log_R", htrack, *sol.x):.3f}', f'{self.get_track_val("center_he4", htrack, *sol.x):.4f}', f'{self.get_track_val("surface_he4", htrack, *sol.x):.4f}', f'{self.get_track_val("surface_h1", htrack, *sol.x):.4f}', f'{self.get_track_val("he_core_mass", htrack, *sol.x):.3f}', f'{self.get_track_val("center_c12", htrack, *sol.x):.4f}\n', "The same values of the original star at the end of the previous " "step were: \n", f'{star.mass:.3f}', f'{star.log_R:.3f}', f'{star.center_he4:.4f}', f'{star.surface_he4:.4f}', f'{star.surface_h1:.4f}', f'{star.he_core_mass:.3f}', f'{star.center_c12:.4f}' ) else: print( "Matching completed unsuccessfully for star with properties: \n" f'mass = {star.mass:.3f}, ', f'log_R = {star.log_R:.3f}, ', f'center_he4 = {star.center_he4:.4f}, ', f'surface_he4 = {star.surface_he4:.4f}, ', f'surface_h1 = {star.surface_h1:.4f}, ', f'he_core_mass = {star.he_core_mass:.3f}, ', f'center_c12 = {star.center_c12:.4f}' ) return initials[0], initials[1], htrack
def __repr__(self): """Return the type of evolution type.""" return "Detached Step." def __call__(self, binary): """Evolve the binary until RLO or compact object formation.""" def get_star_data(binary, star1, star2, htrack, co, copy_prev_m0=None, copy_prev_t0=None): """Get and interpolate the properties of stars. The data of a compact object can be stored as a copy of its companion for convenience except its mass, radius, mdot, and Idot are set to be zero. Parameters ---------- htrack : bool htrack of star1 co: bool co of star2 Return ------- interp1d Contains the properties of star1 if co is false, if co is true, star2 is a compact object, return the properties of star2 """ with np.errstate(all="ignore"): # get the initial m0, t0 track if binary.event == 'ZAMS' or binary.event == 'redirect_from_ZAMS': # ZAMS stars in wide (non-mass exchaging binaries) that are # directed to detached step at birth m0, t0 = star1.mass, 0 elif co: m0, t0 = copy_prev_m0, copy_prev_t0 else: t_before_matching = time.time() m0, t0, htrack = self.match_to_single_star(star1, htrack) t_after_matching = time.time() if self.verbose: print(f"Matching duration: {t_after_matching-t_before_matching:.6g} sec\n") if pd.isna(m0) or pd.isna(t0): return None, None, None if htrack: self.grid = self.grid_Hrich else: self.grid = self.grid_strippedHe # check if m0 is in the grid if m0 < self.grid.grid_mass.min() or m0 > self.grid.grid_mass.max(): set_binary_to_failed(binary) raise MatchingError(f"The mass {m0} is out of the single star grid range and " "cannot be matched to a track.") get_track = self.grid.get max_time = binary.properties.max_simulation_time assert max_time > 0.0, "max_time is non-positive" age = get_track("age", m0) t_max = age.max() # max timelength of the track interp1d = dict() kvalue = dict() for key in KEYS[1:]: kvalue[key] = get_track(key, m0) try: for key in KEYS[1:]: if key in KEYS_POSITIVE: positive = True interp1d[key] = PchipInterpolator2(age, kvalue[key], positive=positive) else: interp1d[key] = PchipInterpolator2(age, kvalue[key]) except ValueError: i_bad = [None] while len(i_bad) != 0: i_bad = np.where(np.diff(age) <= 0)[0] age = np.delete(age, i_bad) for key in KEYS[1:]: kvalue[key] = np.delete(kvalue[key], i_bad) for key in KEYS[1:]: if key in KEYS_POSITIVE: positive = True interp1d[key] = PchipInterpolator2(age, kvalue[key], positive=positive) else: interp1d[key] = PchipInterpolator2(age, kvalue[key]) interp1d["inertia"] = PchipInterpolator( age, kvalue["inertia"] / (const.msol * const.rsol**2)) interp1d["Idot"] = interp1d["inertia"].derivative() interp1d["conv_env_turnover_time_l_b"] = PchipInterpolator2( age, kvalue['conv_env_turnover_time_l_b'] / const.secyer) interp1d["L"] = PchipInterpolator(age, 10 ** kvalue["log_L"]) interp1d["R"] = PchipInterpolator(age, 10 ** kvalue["log_R"]) interp1d["t_max"] = t_max interp1d["max_time"] = max_time interp1d["t0"] = t0 interp1d["m0"] = m0 if co: kvalue["mass"] = np.zeros_like(kvalue["mass"]) + star2.mass kvalue["R"] = np.zeros_like(kvalue["log_R"]) kvalue["mdot"] = np.zeros_like(kvalue["mdot"]) interp1d["mass"] = PchipInterpolator(age, kvalue["mass"]) interp1d["R"] = PchipInterpolator(age, kvalue["R"]) interp1d["mdot"] = PchipInterpolator(age, kvalue["mdot"]) interp1d["Idot"] = PchipInterpolator(age, kvalue["mdot"]) return interp1d, m0, t0 @event(True, 1) def ev_rlo1(t, y): """Difference between radius and Roche lobe at a given time. Used to check if there is RLOF mass transfer during the detached binary evolution interpolation. Parameters ---------- t : float Time of the evolution, in years. y : tuple of floats [separation, eccentricity] at that time. Separation should be in solar radii. Returns ------- float Difference between stellar radius and Roche lobe radius in solar radii. """ pri_mass = interp1d_pri["mass"](t - t_offset_pri) sec_mass = interp1d_sec["mass"](t - t_offset_sec) sep = y[0] ecc = y[1] RL = roche_lobe_radius(sec_mass, pri_mass, (1 - ecc) * sep) # 95% filling of the RL is enough to assume beginning of RLO, # as we do in CO-HMS_RLO grid return interp1d_sec["R"](t - t_offset_sec) - 0.95*RL @event(True, 1) def ev_rlo2(t, y): """Difference between radius and Roche lobe at a given time. Used to check if there is RLOF mass transfer during the detached binary evolution interpolation. Parameters ---------- t : float Time of the evolution, in years y : tuple of floats [separation, eccentricity] at that time. Separation should be in solar radii. Returns ------- float Difference between stellar radius and Roche lobe radius in solar radii. """ pri_mass = interp1d_pri["mass"](t - t_offset_pri) sec_mass = interp1d_sec["mass"](t - t_offset_sec) sep = y[0] ecc = y[1] RL = roche_lobe_radius(pri_mass, sec_mass, (1 - ecc) * sep) return interp1d_pri["R"](t - t_offset_pri) - 0.95*RL @event(True, 1) def ev_rel_rlo1(t, y): """Relative difference between radius and Roche lobe. Used to check if there is RLOF mass transfer during the detached binary evolution interpolation. Parameters ---------- t : float Time of the evolution, in years. y : tuple of floats [separation, eccentricity] at that time. Separation should be in solar radii. Returns ------- float Relative difference between stellar radius and Roche lobe radius. """ pri_mass = interp1d_pri["mass"](t - t_offset_pri) sec_mass = interp1d_sec["mass"](t - t_offset_sec) sep = y[0] ecc = y[1] RL = roche_lobe_radius(sec_mass, pri_mass, (1 - ecc) * sep) return (interp1d_sec["R"](t - t_offset_sec) - RL) / RL @event(True, 1) def ev_rel_rlo2(t, y): """Relative difference between radius and Roche lobe. Used to check if there is RLOF mass transfer during the detached binary evolution interpolation. Parameters ---------- t : float Time of the evolution, in years. y : tuple of floats [separation, eccentricity] at that time. Separation should be in solar radii. Returns ------- float Relative difference between stellar radius and Roche lobe radius. """ pri_mass = interp1d_pri["mass"](t - t_offset_pri) sec_mass = interp1d_sec["mass"](t - t_offset_sec) sep = y[0] ecc = y[1] RL = roche_lobe_radius(pri_mass, sec_mass, (1 - ecc) * sep) return (interp1d_pri["R"](t - t_offset_pri) - RL) / RL @event(True, -1) def ev_max_time1(t, y): return t_max_sec + t_offset_sec - t @event(True, -1) def ev_max_time2(t, y): return t_max_pri + t_offset_pri - t def get_omega(star, is_secondary=True): """Calculate the spin of a star. Parameters ---------- star : SingleStar object Returns ------- float spin of the star in radians per year """ if (star.log_total_angular_momentum is not None and star.total_moment_of_inertia is not None and not np.isnan(star.log_total_angular_momentum) and not np.isnan(star.total_moment_of_inertia)): # the last factor converts rad/s to rad/yr omega_in_rad_per_year = ( 10.0 ** star.log_total_angular_momentum / star.total_moment_of_inertia * const.secyer) if self.verbose: print("calculating initial omega using angular momentum and moment of inertia") else: # we equate the secondary's initial omega to surf_avg_omega # (although the critical rotation should be improved to # take into account radiation pressure) if (star.surf_avg_omega is not None and not np.isnan(star.surf_avg_omega)): if self.verbose: print("calculating initial omega using surf_avg_omega") omega_in_rad_per_year = star.surf_avg_omega * const.secyer elif (star.surf_avg_omega_div_omega_crit is not None and not np.isnan(star.surf_avg_omega_div_omega_crit)): if (star.log_R is not None and not np.isnan(star.log_R)): omega_in_rad_per_year = ( star.surf_avg_omega_div_omega_crit * np.sqrt( const.standard_cgrav * star.mass * const.msol / ((10.0 ** (star.log_R) * const.rsol) ** 3)) * const.secyer) else: if is_secondary: radius_to_be_used = interp1d_sec["R"](interp1d_sec["t0"]) mass_to_be_used = interp1d_sec["mass"](interp1d_sec["t0"]) else: radius_to_be_used = interp1d_pri["R"](interp1d_pri["t0"]) mass_to_be_used = interp1d_pri["mass"](interp1d_pri["t0"]) if self.verbose: print("calculating initial omega using surf_avg_omega_div_omega_crit") omega_in_rad_per_year = ( star.surf_avg_omega_div_omega_crit * np.sqrt( const.standard_cgrav * mass_to_be_used * const.msol / ((radius_to_be_used * const.rsol) ** 3)) * const.secyer) else: omega_in_rad_per_year = 0.0 if self.verbose: print("could not calculate initial omega, setting to zero") if self.verbose: print("calculated omega_in_rad_per_year: ", omega_in_rad_per_year) return omega_in_rad_per_year def get_star_final_values(star, htrack, m0): grid = self.grid_Hrich if htrack else self.grid_strippedHe get_final_values = grid.get_final_values for key in self.final_keys: setattr(star, key, get_final_values('S1_%s' % (key), m0)) def get_star_profile(star, htrack, m0): grid = self.grid_Hrich if htrack else self.grid_strippedHe get_profile = grid.get_profile profile_new = np.array(get_profile('mass', m0)[1]) for i in self.profile_keys: profile_new[i] = get_profile(i, m0)[0] profile_new['omega'] = star.surf_avg_omega star.profile = profile_new KEYS = self.KEYS KEYS_POSITIVE = self.KEYS_POSITIVE binary_sim_prop = getattr(binary, "properties") ## simulation properties of the binary all_step_names = getattr(binary_sim_prop, "all_step_names") companion_1_exists = (binary.star_1 is not None and binary.star_1.state != "massless_remnant") companion_2_exists = (binary.star_2 is not None and binary.star_2.state != "massless_remnant") if companion_1_exists: if companion_2_exists: # to evolve a binary star self.non_existent_companion = 0 else: # star1 is a single star self.non_existent_companion = 2 else: if companion_2_exists: # star2 is a single star self.non_existent_companion = 1 else: # no star in the system raise POSYDONError("There is no star to evolve. Who summoned me?") if self.non_existent_companion == 0: #no isolated evolution, detached step of an actual binary # the primary in a real binary is potential compact object, or the more evolved star if (binary.star_1.state in STAR_STATES_CO and binary.star_2.state in STAR_STATES_H_RICH): primary = binary.star_1 secondary = binary.star_2 secondary.htrack = True primary.htrack = secondary.htrack primary.co = True elif (binary.star_1.state in STAR_STATES_CO and binary.star_2.state in LIST_ACCEPTABLE_STATES_FOR_HeStar): primary = binary.star_1 secondary = binary.star_2 secondary.htrack = False primary.htrack = secondary.htrack primary.co = True elif (binary.star_2.state in STAR_STATES_CO and binary.star_1.state in STAR_STATES_H_RICH): primary = binary.star_2 secondary = binary.star_1 secondary.htrack = True primary.htrack = secondary.htrack primary.co = True elif (binary.star_2.state in STAR_STATES_CO and binary.star_1.state in LIST_ACCEPTABLE_STATES_FOR_HeStar): primary = binary.star_2 secondary = binary.star_1 secondary.htrack = False primary.htrack = secondary.htrack primary.co = True elif (binary.star_1.state in STAR_STATES_H_RICH and binary.star_2.state in STAR_STATES_H_RICH): primary = binary.star_1 secondary = binary.star_2 secondary.htrack = True primary.htrack = True primary.co = False elif (binary.star_1.state in LIST_ACCEPTABLE_STATES_FOR_HeStar and binary.star_2.state in STAR_STATES_H_RICH): primary = binary.star_1 secondary = binary.star_2 secondary.htrack = True primary.htrack = False primary.co = False elif (binary.star_2.state in LIST_ACCEPTABLE_STATES_FOR_HeStar and binary.star_1.state in STAR_STATES_H_RICH): primary = binary.star_2 secondary = binary.star_1 secondary.htrack = True primary.htrack = False primary.co = False elif (binary.star_1.state in LIST_ACCEPTABLE_STATES_FOR_HeStar and binary.star_2.state in LIST_ACCEPTABLE_STATES_FOR_HeStar): primary = binary.star_1 secondary = binary.star_2 secondary.htrack = False primary.htrack = False primary.co = False else: raise ValueError("States not recognized!") # star 1 is a massless remnant, only star 2 exists elif self.non_existent_companion == 1: # we force primary.co=True for all isolated evolution, # where the secondary is the one evolving one primary = binary.star_1 primary.co = True primary.htrack = False secondary = binary.star_2 if (binary.star_2.state in STAR_STATES_H_RICH): secondary.htrack = True elif (binary.star_2.state in LIST_ACCEPTABLE_STATES_FOR_HeStar): secondary.htrack = False elif (binary.star_2.state in STAR_STATES_CO): # only a compact object left return else: raise ValueError("State not recognized!") # star 2 is a massless remnant, only star 1 exists elif self.non_existent_companion == 2: primary = binary.star_2 primary.co = True primary.htrack = False secondary = binary.star_1 if (binary.star_1.state in STAR_STATES_H_RICH): secondary.htrack = True elif (binary.star_1.state in LIST_ACCEPTABLE_STATES_FOR_HeStar): secondary.htrack = False elif (binary.star_1.state in STAR_STATES_CO): return else: raise ValueError("State not recognized!") else: raise POSYDONError("Non existent companion has not a recognized value!") # get the matched data of two stars, respectively interp1d_sec, m0, t0 = get_star_data(binary, secondary, primary, secondary.htrack, co=False) primary_not_normal = (primary.co) or (self.non_existent_companion in [1,2]) primary_normal = (not primary.co) and self.non_existent_companion == 0 if primary_not_normal: # copy the secondary star except mass which is of the primary, # and radius, mdot, Idot = 0 interp1d_pri = get_star_data( binary, secondary, primary, secondary.htrack, co=True, copy_prev_m0=m0, copy_prev_t0=t0)[0] elif primary_normal: interp1d_pri = get_star_data( binary, primary, secondary, primary.htrack, False)[0] else: raise ValueError("During matching, the primary should either be normal (stellar object) or ", "not normal (CO, nonexistent companion).") if interp1d_sec is None or interp1d_pri is None: failed_state = binary.state set_binary_to_failed(binary) raise MatchingError(f"Grid matching failed for {failed_state} binary.") t0_sec = interp1d_sec["t0"] t0_pri = interp1d_pri["t0"] m01 = interp1d_sec["m0"] m02 = interp1d_pri["m0"] t_max_sec = interp1d_sec["t_max"] t_max_pri = interp1d_pri["t_max"] t_offset_sec = binary.time - t0_sec t_offset_pri = binary.time - t0_pri max_time = interp1d_sec["max_time"] if (ev_rlo1(binary.time, [binary.separation, binary.eccentricity]) >= 0 or ev_rlo2(binary.time, [binary.separation, binary.eccentricity]) >= 0): binary.state = "initial_RLOF" return else: if not (max_time - binary.time > 0.0): raise ValueError("max_time is lower than the current time. " "Evolution of the detached binary will go to " "lower times.") with np.errstate(all="ignore"): omega_in_rad_per_year_sec = get_omega(secondary) if primary_not_normal: # omega of compact objects or masslessremnant won't be used for intergration omega_in_rad_per_year_pri = omega_in_rad_per_year_sec elif not primary.co: omega_in_rad_per_year_pri = get_omega(primary,is_secondary = False) t_before_ODEsolution = time.time() try: s = solve_ivp( lambda t, y: diffeq( t, y, interp1d_sec["R"](t - t_offset_sec), interp1d_sec["L"](t - t_offset_sec), *[ interp1d_sec[key](t - t_offset_sec) for key in KEYS[1:11] ], interp1d_sec["Idot"](t - t_offset_sec), interp1d_sec["conv_env_turnover_time_l_b"]( t - t_offset_sec), interp1d_pri["R"](t - t_offset_pri), interp1d_pri["L"](t - t_offset_pri), *[ interp1d_pri[key](t - t_offset_pri) for key in KEYS[1:11] ], interp1d_pri["Idot"](t - t_offset_pri), interp1d_pri["conv_env_turnover_time_l_b"]( t - t_offset_pri), self.do_wind_loss, self.do_tides, self.do_gravitational_radiation, self.do_magnetic_braking, self.magnetic_braking_mode, self.do_stellar_evolution_and_spin_from_winds # ,self.verbose ), events=[ev_rlo1, ev_rlo2, ev_max_time1, ev_max_time2], method="Radau", t_span=(binary.time, max_time), y0=[ binary.separation, binary.eccentricity, omega_in_rad_per_year_sec, omega_in_rad_per_year_pri, ], dense_output=True, # vectorized=True ) except Exception: s = solve_ivp( lambda t, y: diffeq( t, y, interp1d_sec["R"](t - t_offset_sec), interp1d_sec["L"](t - t_offset_sec), *[ interp1d_sec[key](t - t_offset_sec) for key in KEYS[1:11] ], interp1d_sec["Idot"](t - t_offset_sec), interp1d_sec["conv_env_turnover_time_l_b"]( t - t_offset_sec), interp1d_pri["R"](t - t_offset_pri), interp1d_pri["L"](t - t_offset_pri), *[ interp1d_pri[key](t - t_offset_pri) for key in KEYS[1:11] ], interp1d_pri["Idot"](t - t_offset_pri), interp1d_pri["conv_env_turnover_time_l_b"]( t - t_offset_pri), self.do_wind_loss, self.do_tides, self.do_gravitational_radiation, self.do_magnetic_braking, self.magnetic_braking_mode, self.do_stellar_evolution_and_spin_from_winds # ,self.verbose ), events=[ev_rlo1, ev_rlo2, ev_max_time1, ev_max_time2], method="RK45", t_span=(binary.time, max_time), y0=[ binary.separation, binary.eccentricity, omega_in_rad_per_year_sec, omega_in_rad_per_year_pri, ], dense_output=True, # vectorized=True ) t_after_ODEsolution = time.time() if self.verbose: print(f"\nODE solver duration: {t_after_ODEsolution-t_before_ODEsolution:.6g}") print("solution of ODE", s) if s.status == -1: failed_state = binary.state set_binary_to_failed(binary) raise NumericalError(f"Integration failed for {failed_state} binary.") if self.dt is not None and self.dt > 0: t = np.arange(binary.time, s.t[-1] + self.dt/2.0, self.dt)[1:] if t[-1] < s.t[-1]: t = np.hstack([t, s.t[-1]]) elif (self.n_o_steps_history is not None and self.n_o_steps_history > 0): t_step = (s.t[-1] - binary.time) / self.n_o_steps_history t = np.arange(binary.time, s.t[-1] + t_step / 2.0, t_step)[1:] if t[-1] < s.t[-1]: t = np.hstack([t, s.t[-1]]) else: # self.dt is None and self.n_o_steps_history is None t = np.array([s.t[-1]]) sep_interp, ecc_interp, omega_interp_sec, omega_interp_pri = s.sol(t) mass_interp_sec = interp1d_sec[self.translate["mass"]] mass_interp_pri = interp1d_pri[self.translate["mass"]] interp1d_sec["sep"] = sep_interp interp1d_sec["ecc"] = ecc_interp interp1d_sec["omega"] = omega_interp_sec interp1d_pri["omega"] = omega_interp_pri interp1d_sec["porb"] = orbital_period_from_separation( sep_interp, mass_interp_sec(t - t_offset_sec), mass_interp_pri(t - t_offset_pri)) interp1d_pri["porb"] = orbital_period_from_separation( sep_interp, mass_interp_pri(t - t_offset_pri), mass_interp_sec(t - t_offset_sec)) interp1d_sec["time"] = t ## UPDATE STAR AND BINARY PROPERTIES WITH INTERPOLATED VALUES for obj, prop in zip([secondary, primary, binary], [STARPROPERTIES, STARPROPERTIES, BINARYPROPERTIES]): for key in prop: if key in ["event", "mass_transfer_case", "nearest_neighbour_distance", "state", "metallicity", "V_sys"]: current = getattr(obj, key) # For star objects, the state is calculated further below history = [current] * len(t[:-1]) elif (key in ["surf_avg_omega_div_omega_crit"] and obj == secondary): # replace the actual surf_avg_w with the effective omega, # which takes into account the whole star # key = 'effective_omega' # in rad/sec # current = s.y[2][-1] / 3.1558149984e7 # history_of_attribute = s.y[2][:-1] / 3.1558149984e7 omega_crit_current_sec = np.sqrt(const.standard_cgrav * interp1d_sec[self.translate["mass"]](t[-1] - t_offset_sec).item() * const.msol / (interp1d_sec[self.translate["R"]](t[-1] - t_offset_sec).item() * const.rsol)**3) omega_crit_hist_sec = np.sqrt(const.standard_cgrav * interp1d_sec[self.translate["mass"]](t[:-1] - t_offset_sec) * const.msol / (interp1d_sec[self.translate["R"]](t[:-1] - t_offset_sec) * const.rsol)**3) current = (interp1d_sec["omega"][-1] / const.secyer / omega_crit_current_sec) history = (interp1d_sec["omega"][:-1] / const.secyer / omega_crit_hist_sec) elif (key in ["surf_avg_omega_div_omega_crit"] and obj == primary): if primary.co: current = None history = [current] * len(t[:-1]) elif not primary.co: # TODO: change `item()` to 0 omega_crit_current_pri = np.sqrt(const.standard_cgrav * interp1d_pri[self.translate["mass"]](t[-1] - t_offset_pri).item() * const.msol / (interp1d_pri[self.translate["R"]](t[-1] - t_offset_pri).item() * const.rsol)**3) omega_crit_hist_pri = np.sqrt(const.standard_cgrav * interp1d_pri[self.translate["mass"]](t[:-1] - t_offset_pri) * const.msol / (interp1d_pri[self.translate["R"]](t[:-1] - t_offset_pri) * const.rsol)**3) current = (interp1d_pri["omega"][-1] / const.secyer / omega_crit_current_pri) history = (interp1d_pri["omega"][:-1] / const.secyer / omega_crit_hist_pri) elif (key in ["surf_avg_omega"] and obj == secondary): current = interp1d_sec["omega"][-1] / const.secyer history = interp1d_sec["omega"][:-1] / const.secyer elif (key in ["surf_avg_omega"] and obj == primary): if primary.co: current = None history = [current] * len(t[:-1]) else: current = interp1d_pri["omega"][-1] / const.secyer history = interp1d_pri["omega"][:-1] / const.secyer elif (key in ["rl_relative_overflow_1"] and obj == binary): if binary.star_1.state in ("BH", "NS", "WD","massless_remnant"): current = None history = [current] * len(t[:-1]) elif secondary == binary.star_1: current = ev_rel_rlo1(t[-1], [interp1d_sec["sep"][-1], interp1d_sec["ecc"][-1]]) history = ev_rel_rlo1(t[:-1], [interp1d_sec["sep"][:-1], interp1d_sec["ecc"][:-1]]) elif secondary == binary.star_2: current = ev_rel_rlo2(t[-1], [interp1d_sec["sep"][-1], interp1d_sec["ecc"][-1]]) history = ev_rel_rlo2(t[:-1], [interp1d_sec["sep"][:-1], interp1d_sec["ecc"][:-1]]) elif (key in ["rl_relative_overflow_2"] and obj == binary): if binary.star_2.state in ("BH", "NS", "WD","massless_remnant"): current = None history = [current] * len(t[:-1]) elif secondary == binary.star_2: current = ev_rel_rlo1(t[-1], [interp1d_sec["sep"][-1], interp1d_sec["ecc"][-1]]) history = ev_rel_rlo1(t[:-1], [interp1d_sec["sep"][:-1], interp1d_sec["ecc"][:-1]]) elif secondary == binary.star_1: current = ev_rel_rlo2(t[-1], [interp1d_sec["sep"][-1], interp1d_sec["ecc"][-1]]) history = ev_rel_rlo2(t[:-1], [interp1d_sec["sep"][:-1], interp1d_sec["ecc"][:-1]]) elif key in ["separation", "orbital_period", "eccentricity", "time"]: current = interp1d_sec[self.translate[key]][-1].item() history = interp1d_sec[self.translate[key]][:-1] elif (key in ["total_moment_of_inertia"] and obj == secondary): current = interp1d_sec[self.translate[key]]( t[-1] - t_offset_sec).item() * (const.msol * const.rsol**2) history = interp1d_sec[self.translate[key]]( t[:-1] - t_offset_sec) * (const.msol * const.rsol**2) elif (key in ["total_moment_of_inertia"] and obj == primary): if primary.co: current = getattr(obj, key) history = [current] * len(t[:-1]) else: current = interp1d_pri[self.translate[key]]( t[-1] - t_offset_pri).item() * (const.msol * const.rsol**2) history = interp1d_pri[self.translate[key]]( t[:-1] - t_offset_pri) * (const.msol * const.rsol**2) elif (key in ["log_total_angular_momentum"] and obj == secondary): current_omega = interp1d_sec["omega"][-1] ## add a warning catch if the current omega has an invalid value ## (otherwise python will throw an insuppressible warning when taking the log) if interp1d_sec["omega"][-1] <=0: Pwarn("Trying to compute log angular momentum for object with no spin", "InappropriateValueWarning") current_omega = np.nan current = np.log10( (current_omega / const.secyer) * (interp1d_sec[ self.translate["total_moment_of_inertia"]](t[-1] - t_offset_sec).item() * (const.msol * const.rsol ** 2))) history = np.log10( (interp1d_sec["omega"][:-1] / const.secyer) * (interp1d_sec[self.translate["total_moment_of_inertia"]]( t[:-1] - t_offset_sec) * (const.msol * const.rsol**2))) elif (key in ["log_total_angular_momentum"] and obj == primary): if primary.co: current = getattr(obj, key) history = [current] * len(t[:-1]) else: current = np.log10( (interp1d_pri["omega"][-1] / const.secyer) * (interp1d_pri[self.translate["total_moment_of_inertia"]]( t[-1] - t_offset_pri).item() * (const.msol * const.rsol**2))) history = np.log10( (interp1d_pri["omega"][:-1] / const.secyer) * (interp1d_pri[self.translate["total_moment_of_inertia"]]( t[:-1] - t_offset_pri) * (const.msol * const.rsol**2))) elif (key in ["spin"] and obj == secondary): current = (const.clight * (interp1d_sec["omega"][-1] / const.secyer) * interp1d_sec[self.translate["total_moment_of_inertia"]]( t[-1] - t_offset_sec).item() * (const.msol * const.rsol**2) / (const.standard_cgrav * (interp1d_sec[self.translate["mass"]]( t[-1] - t_offset_sec).item() * const.msol)**2)) history = (const.clight * (interp1d_sec["omega"][:-1] / const.secyer) * interp1d_sec[self.translate["total_moment_of_inertia"]]( t[:-1] - t_offset_sec)* (const.msol * const.rsol**2) / (const.standard_cgrav * (interp1d_sec[self.translate["mass"]]( t[:-1] - t_offset_sec) * const.msol)**2)) elif (key in ["spin"] and obj == primary): if primary.co: current = getattr(obj, key) history = [current] * len(t[:-1]) else: current = (const.clight * (interp1d_pri["omega"][-1] / const.secyer) * interp1d_pri[self.translate["total_moment_of_inertia"]]( t[-1] - t_offset_pri).item() * (const.msol * const.rsol**2) / (const.standard_cgrav * (interp1d_pri[self.translate["mass"]]( t[-1] - t_offset_pri).item() * const.msol)**2)) history = (const.clight * (interp1d_pri["omega"][:-1] / const.secyer) * interp1d_pri[self.translate["total_moment_of_inertia"]]( t[:-1] - t_offset_pri) * (const.msol * const.rsol**2) / (const.standard_cgrav * (interp1d_pri[self.translate["mass"]]( t[:-1] - t_offset_pri) * const.msol)**2)) elif (key in ["lg_mdot", "lg_wind_mdot"] and obj == secondary): # in detached step, lg_mdot = lg_wind_mdot if interp1d_sec[self.translate[key]](t[-1] - t_offset_sec) == 0: current = -98.99 else: current = np.log10(np.abs(interp1d_sec[self.translate[key]]( t[-1] - t_offset_sec))).item() history = np.ones_like(t[:-1]) for i in range(len(t)-1): if interp1d_sec[self.translate[key]](t[i] - t_offset_sec) == 0: history[i] = -98.99 else: history[i] = np.log10(np.abs(interp1d_sec[self.translate[key]]( t[i] - t_offset_sec))) elif (key in ["lg_mdot", "lg_wind_mdot"] and obj == primary): if primary.co: current = None history = [current] * len(t[:-1]) else: if interp1d_sec[self.translate[key]](t[-1] - t_offset_sec) == 0: current = -98.99 else: current = np.log10(np.abs(interp1d_sec[self.translate[key]]( t[-1] - t_offset_sec))).item() history = np.ones_like(t[:-1]) for i in range(len(t)-1): if (interp1d_sec[self.translate[key]](t[i] - t_offset_sec) == 0): history[i] = -98.99 else: history[i] = np.log10(np.abs(interp1d_sec[self.translate[key]]( t[i] - t_offset_sec))) elif (self.translate[key] in interp1d_sec and obj == secondary): current = interp1d_sec[self.translate[key]](t[-1] - t_offset_sec).item() history = interp1d_sec[self.translate[key]](t[:-1] - t_offset_sec) elif (self.translate[key] in interp1d_pri and obj == primary): if primary.co: current = getattr(obj, key) history = [current] * len(t[:-1]) else: current = interp1d_pri[self.translate[key]](t[-1] - t_offset_pri).item() history = interp1d_pri[self.translate[key]](t[:-1] - t_offset_pri) elif key in ["profile"]: current = None history = [current] * len(t[:-1]) else: current = np.nan history = np.ones_like(t[:-1]) * current setattr(obj, key, current) getattr(obj, key + "_history").extend(history) secondary.state = check_state_of_star(secondary, star_CO=False) for timestep in range(-len(t[:-1]), 0): secondary.state_history[timestep] = check_state_of_star(secondary, i=timestep, star_CO=False) if primary.state == "massless_remnant": pass elif primary.co: mdot_acc = np.atleast_1d(bondi_hoyle( binary, primary, secondary, slice(-len(t), None), wind_disk_criteria=True, scheme='Kudritzki+2000')) primary.lg_mdot = np.log10(mdot_acc.item(-1)) primary.lg_mdot_history[len(primary.lg_mdot_history) - len(t) + 1:] = np.log10(mdot_acc[:-1]) else: primary.state = check_state_of_star(primary, star_CO=False) for timestep in range(-len(t[:-1]), 0): primary.state_history[timestep] = check_state_of_star(primary, i=timestep, star_CO=False) ## CHECK IF THE BINARY IS IN RLO if s.t_events[0] or s.t_events[1]: if self.RLO_orbit_at_orbit_with_same_am: # final circular orbit conserves angular momentum # compared to the eccentric orbit binary.separation *= (1 - s.y[1][-1]**2) binary.orbital_period *= (1 - s.y[1][-1]**2) ** 1.5 else: # final circular orbit is at periastron of the ecc. orbit binary.separation *= (1 - s.y[1][-1]) binary.orbital_period *= (1 - s.y[1][-1]) ** 1.5 assert np.abs( binary.orbital_period - orbital_period_from_separation( binary.separation, secondary.mass, primary.mass) ) / binary.orbital_period < 10 ** (-2) binary.eccentricity = 0 if s.t_events[0]: if secondary == binary.star_1: binary.state = "RLO1" binary.event = "oRLO1" else: binary.state = "RLO2" binary.event = "oRLO2" elif s.t_events[1]: if secondary == binary.star_1: binary.state = "RLO2" binary.event = "oRLO2" else: binary.state = "RLO1" binary.event = "oRLO1" if ('step_HMS_HMS_RLO' not in all_step_names): if ((binary.star_1.state in STAR_STATES_HE_RICH_EVOLVABLE and binary.star_2.state in STAR_STATES_H_RICH_EVOLVABLE) or (binary.star_1.state in STAR_STATES_H_RICH_EVOLVABLE and binary.star_2.state in STAR_STATES_HE_RICH_EVOLVABLE)): set_binary_to_failed(binary) raise FlowError("Evolution of H-rich/He-rich stars in RLO onto H-rich/He-rich stars after " "HMS-HMS not yet supported.") elif (binary.star_1.state in STAR_STATES_H_RICH_EVOLVABLE and binary.star_2.state in STAR_STATES_H_RICH_EVOLVABLE): set_binary_to_failed(binary) raise ClassificationError("Binary is in the detached step but has stable RLO with two HMS stars - " "should it have undergone CE (was its HMS-HMS interpolation class unstable MT?)") ## CHECK IF STARS WILL UNDERGO CC elif s.t_events[2]: # reached t_max of track. End of life (possible collapse) of secondary if secondary == binary.star_1: binary.event = "CC1" else: binary.event = "CC2" get_star_final_values(secondary, secondary.htrack, m01) get_star_profile(secondary, secondary.htrack, m01) if not primary.co and primary.state in STAR_STATES_CC: # simultaneous core-collapse of the other star as well primary_time = t_max_pri + t_offset_pri - t[-1] secondary_time = t_max_sec + t_offset_sec - t[-1] if primary_time == secondary_time: # we manually check if s.t_events[3] should also be happening simultaneously get_star_final_values(primary, primary.htrack, m02) get_star_profile(primary, primary.htrack, m02) if primary.mass != secondary.mass: raise POSYDONError( "Both stars are found to be ready for collapse " "(i.e. end of their life) during the detached " "step, but do not have the same mass") elif s.t_events[3]: # reached t_max of track. End of life (possible collapse) of primary if secondary == binary.star_1: binary.event = "CC2" else: binary.event = "CC1" get_star_final_values(primary, primary.htrack, m02) get_star_profile(primary, primary.htrack, m02) else: # Reached max_time asked. if binary.properties.max_simulation_time - binary.time < 0.0: binary.event = "MaxTime_exceeded" else: binary.event = "maxtime"
[docs] def event(terminal, direction=0): """Return a helper function to set attributes for solve_ivp events.""" def dec(f): f.terminal = True f.direction = direction return f return dec
[docs] def diffeq( t, y, R_sec, L_sec, M_sec, Mdot_sec, I_sec, # he_core_mass, # mass_conv_core, # conv_mx1_top, # conv_mx1_bot, conv_mx1_top_r_sec, conv_mx1_bot_r_sec, surface_h1_sec, center_h1_sec, M_env_sec, DR_env_sec, Renv_middle_sec, Idot_sec, tau_conv_sec, R_pri, L_pri, M_pri, Mdot_pri, I_pri, # he_core_mass, # mass_conv_core, # conv_mx1_top, # conv_mx1_bot, conv_mx1_top_r_pri, conv_mx1_bot_r_pri, surface_h1_pri, center_h1_pri, M_env_pri, DR_env_pri, Renv_middle_pri, Idot_pri, tau_conv_pri, do_wind_loss=True, do_tides=True, do_gravitational_radiation=True, do_magnetic_braking=True, magnetic_braking_mode="RVJ83", do_stellar_evolution_and_spin_from_winds=True, verbose=False, ): """Diff. equation describing the orbital evolution of a detached binary. The equation handles wind mass-loss [1]_, tidal [2]_, gravational [3]_ effects and magnetic braking [4]_, [5]_, [6]_, [7]_, [8]_. It also handles the change of the secondary's stellar spin due to its change of moment of intertia and due to mass-loss from its spinning surface. It is assumed that the mass loss is fully non-conservative. Magnetic braking is fully applied to secondary stars with mass less than 1.3 Msun and fully off for stars with mass larger then 1.5 Msun. The effect of magnetic braking falls linearly for stars with mass between 1.3 Msun and 1.5 Msun. TODO: exaplin new features (e.g., double COs) Parameters ---------- t : float The age of the system in years y : list of float Contains the separation, eccentricity and angular velocity, in Rsolar, dimensionless and rad/year units, respectively. M_pri : float Mass of the primary in Msolar units. M_sec : float Mass of the secondary in Msolar units. Mdot : float Rate of change of mass of the star in Msolar/year units. (Negative for wind mass loss.) R : float Radius of the star in Rsolar units. I : float Moment of inertia of the star in Msolar*Rsolar^2. tau_conv: float Convective turnover time of the star, calculated @ 0.5*pressure_scale_height above the bottom of the outer convection zone in yr. L : float Luminosity of the star in solar units. #mass_conv_core : float # Convective core mass of the secondary in Msolar units. conv_mx1_top_r : float Coordinate of top convective mixing zone coordinate in Rsolar. conv_mx1_bot_r : float Coordinate of bottom convective mixing zone coordinate in Rsolar. surface_h1 : float surface mass Hydrogen abundance center_h1 : float center mass Hydrogen abundance M_env : float mass of the dominant convective region for tides above the core, in Msolar. DR_env : float thickness of the dominant convective region for tides above the core, in Rsolar. Renv_middle : float position of the dominant convective region for tides above the core, in Rsolar. Idot : float Rate of change of the moment of inertia of the star in Msolar*Rsolar^2 per year. do_wind_loss: Boolean If True, take into account change of separation due to mass loss from the secondary. Default: True. do_tides: Booleans If True, take into account change of separation, eccentricity and secondary spin due to tidal forces. Default: True. do_gravitational_radiation: Boolean If True, take into account change of separation and eccentricity due to gravitational wave radiation. Default: True do_magnetic_braking: Boolean If True, take into account change of star spin due to magnetic braking. Default: True. magnetic_braking_mode: String A string corresponding to the desired magnetic braking prescription. - RVJ83 : Rappaport, Verbunt, & Joss 1983 [4]_ - M15 : Matt et al. 2015 [5]_ - G18 : Garraffo et al. 2018 [6]_ - CARB : Van & Ivanova 2019 [7]_ do_stellar_evolution_and_spin_from_winds: Boolean If True, take into account change of star spin due to change of its moment of inertia during its evolution and due to spin angular momentum loss due to winds. Default: True. verbose : Boolean If we want to print stuff. Default: False. Returns ------- list of float Contains the change of the separation, eccentricity and angular velocity, in Rsolar, dimensionless and rad/year units, respectively. References ---------- .. [1] Tauris, T. M., & van den Heuvel, E. 2006, Compact stellar X-ray sources, 1, 623 .. [2] Hut, P. 1981, A&A, 99, 126 .. [3] Junker, W., & Schafer, G. 1992, MNRAS, 254, 146 .. [4] Rappaport, S., Joss, P. C., & Verbunt, F. 1983, ApJ, 275, 713 .. [5] Matt et al. 2015, ApJ, 799, L23 .. [6] Garraffo et al. 2018, ApJ, 862, 90 .. [7] Van & Ivanova 2019, ApJ, 886, L31 .. [8] Gossage et al. 2021, ApJ, 912, 65 """ y[0] = np.max([y[0], 0]) # We limit separation to non-negative values a = y[0] y[1] = np.max([y[1], 0]) # We limit eccentricity to non-negative values e = y[1] if e > 0 and e < 10.0 ** (-3): # we force a negligible eccentricity to become 0 # for computational stability e = 0.0 if verbose and verbose != 1: print("negligible eccentricity became 0 for " "computational stability") y[2] = np.max([y[2], 0]) # We limit omega spin to non-negative values Omega_sec = y[2] # in rad/yr y[3] = np.max([y[3], 0]) Omega_pri = y[3] da = 0.0 de = 0.0 dOmega_sec = 0.0 dOmega_pri = 0.0 # Mass Loss if do_wind_loss: q1 = M_sec / M_pri k11 = (1 / (1 + q1)) * (Mdot_sec / M_sec) k21 = Mdot_sec / M_sec k31 = Mdot_sec / (M_pri + M_sec) # This is simplified to da_mt = -a * Mdot/(M+Macc), for only (negative) # wind Mdot from star M. da_mt_sec = a * (2 * k11 - 2 * k21 + k31) q2 = M_pri / M_sec k12 = (1 / (1 + q2)) * (Mdot_pri / M_pri) k22 = Mdot_pri / M_pri k32 = Mdot_pri / (M_pri + M_sec) da_mt_pri = a * ( 2 * k12 - 2 * k22 + k32 ) if verbose and verbose != 1: print("da_mt = ", da_mt_sec, da_mt_pri) da = da + da_mt_sec + da_mt_pri # Tidal forces if do_tides: q1 = M_pri / M_sec q2 = M_sec / M_pri # P_orb in years. From 3rd Kepler's law, transforming separation from # Rsolar to AU, to avoid using constants # TODO: we aleady have this function! P_orb = np.sqrt((a / const.aursun) ** 3 / (M_pri + M_sec)) n = 2.0 * const.pi / P_orb # mean orbital ang. vel. in rad/year f1 = ( 1 + (31 / 2) * e ** 2 + (255 / 8) * e ** 4 + (185 / 16) * e ** 6 + (25 / 64) * e ** 8 ) f2 = 1 + (15 / 2) * e ** 2 + (45 / 8) * e ** 4 + (5 / 16) * e ** 6 f3 = 1 + (15 / 4) * e ** 2 + (15 / 8) * e ** 4 + (5 / 64) * e ** 6 f4 = 1 + (3 / 2) * e ** 2 + (1 / 8) * e ** 4 f5 = 1 + 3 * e ** 2 + (3 / 8) * e ** 4 # equilibrium timecale if ((M_env_sec != 0.0 and not np.isnan(M_env_sec)) and (DR_env_sec != 0.0 and not np.isnan(DR_env_sec)) and ( Renv_middle_sec != 0.0 and not np.isnan(Renv_middle_sec))): # eq. (31) of Hurley et al. 2002, generalized for convective layers # not on surface too tau_conv_sec = 0.431 * ((M_env_sec * DR_env_sec * Renv_middle_sec / (3 * L_sec)) ** (1.0 / 3.0)) else: if verbose and verbose != 1: print("something wrong with M_env/DR_env/Renv_middle", M_env_sec, DR_env_sec, Renv_middle_sec) tau_conv_sec = 1.0e99 if ((M_env_pri != 0.0 and not np.isnan(M_env_pri)) and (DR_env_pri != 0.0 and not np.isnan(DR_env_pri)) and ( Renv_middle_pri != 0.0 and not np.isnan(Renv_middle_pri))): # eq. (31) of Hurley et al. 2002, generalized for convective layers # not on surface too tau_conv_pri = 0.431 * ((M_env_pri * DR_env_pri * Renv_middle_pri / (3 * L_pri)) ** (1.0/3.0)) else: if verbose and verbose != 1: print("something wrong with M_env/DR_env/Renv_middle", M_env_pri, DR_env_pri, Renv_middle_pri) tau_conv_pri = 1.0e99 P_spin_sec = 2 * np.pi / Omega_sec P_spin_pri = 2 * np.pi / Omega_pri P_tid_sec = np.abs(1 / (1 / P_orb - 1 / P_spin_sec)) P_tid_pri = np.abs(1 / (1 / P_orb - 1 / P_spin_pri)) f_conv_sec = np.min([1, (P_tid_sec / (2 * tau_conv_sec)) ** 2]) f_conv_pri = np.min([1, (P_tid_pri / (2 * tau_conv_pri)) ** 2]) F_tid = 1. # not 50 as before kT_conv_sec = ( (2. / 21) * (f_conv_sec / tau_conv_sec) * (M_env_sec / M_sec) ) # eq. (30) of Hurley et al. 2002 kT_conv_pri = ( (2. / 21) * (f_conv_pri / tau_conv_pri) * (M_env_pri / M_pri) ) if kT_conv_sec is None or not np.isfinite(kT_conv_sec): kT_conv_sec = 0.0 if kT_conv_pri is None or not np.isfinite(kT_conv_pri): kT_conv_pri = 0.0 if verbose: print("kT_conv_sec is", kT_conv_sec, ", set to 0.") print("kT_conv_pri is", kT_conv_pri, ", set to 0.") # this is the 1/timescale of all d/dt calculted below in yr^-1 if verbose and verbose != 1: print( "Equilibrium tides in deep convective envelope", M_env_sec, DR_env_sec, Renv_middle_sec, R_sec, M_sec, M_env_pri, DR_env_pri, Renv_middle_pri, R_pri, M_pri ) print("convective tiimescales and efficiencies", tau_conv_sec, P_orb, P_spin_sec, P_tid_sec, f_conv_sec, F_tid, tau_conv_pri, P_orb, P_spin_pri, P_tid_pri, f_conv_pri, F_tid, ) # dynamical timecale F_tid = 1 # E2 = 1.592e-9*M**(2.84) # eq. (43) of Hurley et al. 2002. Deprecated R_conv_sec = conv_mx1_top_r_sec - conv_mx1_bot_r_sec R_conv_pri = conv_mx1_top_r_pri - conv_mx1_bot_r_pri # convective core # R_conv = conv_mx1_top_r # convective core if (R_conv_sec > R_sec or R_conv_sec <= 0.0 or conv_mx1_bot_r_sec / R_sec > 0.1): # R_conv = 0.5*R # if verbose: # print( # "R_conv of the convective core is not behaving well or " # "we are not calculating the convective core, we make it " # "equal to half of Rstar", # R_conv, # R, # conv_mx1_top_r, # conv_mx1_bot_r, # ) # we switch to Zahn+1975 calculation of E2 E21 = 1.592e-9 * M_sec ** (2.84) else: if R_sec <= 0: E21 = 0 elif surface_h1_sec > 0.4: E21 = 10.0 ** (-0.42) * (R_conv_sec / R_sec) ** ( 7.5 ) # eq. (9) of Qin et al. 2018, 616, A28 elif surface_h1_sec <= 0.4: # "HeStar": E21 = 10.0 ** (-0.93) * (R_conv_sec / R_sec) ** ( 6.7 ) # eq. (9) of Qin et al. 2018, 616, A28 else: # in principle we should not go here E21 = 1.592e-9 * M_sec ** ( 2.84 ) # eq. (43) of Hurley et al. 2002 from Zahn+1975 Depreciated # kT = 1.9782e4 * np.sqrt(M * R**2 / a**5) * (1 + q)**(5. / 6) * E2 # eq. (42) of Hurley et al. 2002. Depreciated if (R_conv_pri > R_pri or R_conv_pri <= 0.0 or conv_mx1_bot_r_pri / R_pri > 0.1): E22 = 1.592e-9 * M_pri ** (2.84) if verbose and verbose != 1: print( "R_conv of the convective core is not behaving well or we " "are not calculating the convective core, we switch to " "Zahn+1975 calculation of E2", R_conv_sec, R_sec, conv_mx1_top_r_sec, conv_mx1_bot_r_sec, E21, R_conv_pri, R_pri, conv_mx1_top_r_pri, conv_mx1_bot_r_pri, E22 ) else: if R_pri <= 0: E22 = 0 elif surface_h1_pri > 0.4: E22 = 10.0 ** (-0.42) * (R_conv_pri / R_pri) ** ( 7.5 ) # eq. (9) of Qin et al. 2018, 616, A28 elif surface_h1_pri <= 0.4: # "HeStar": E22 = 10.0 ** (-0.93) * (R_conv_pri / R_pri) ** ( 6.7 ) # eq. (9) of Qin et al. 2018, 616, A28 else: # in principle we should not go here E22 = 1.592e-9 * M_pri ** ( 2.84 ) kT_rad_sec = ( np.sqrt(const.standard_cgrav * (M_sec * const.msol) * (R_sec * const.rsol)**2 / (a * const.rsol)**5) * (1 + q1) ** (5.0 / 6) * E21 * const.secyer) kT_rad_pri = ( np.sqrt(const.standard_cgrav * (M_pri * const.msol) * (R_pri * const.rsol)**2 / (a * const.rsol)**5) * (1 + q2) ** (5.0 / 6) * E22 * const.secyer) # this is the 1/timescale of all d/dt calculted below in yr^-1 if verbose and verbose != 1: print( "Dynamical tides in radiative envelope", conv_mx1_top_r_sec, conv_mx1_bot_r_sec, R_conv_sec, E21, conv_mx1_top_r_pri, conv_mx1_bot_r_pri, R_conv_pri, E22, F_tid ) kT_sec = max(kT_conv_sec, kT_rad_sec) kT_pri = max(kT_conv_pri, kT_rad_pri) if verbose and verbose != 1: print("kT_conv/rad of tides is ", kT_conv_sec, kT_rad_sec, kT_conv_pri, kT_rad_pri, "in 1/yr, and we picked the ", kT_sec, kT_pri) da_tides_sec = ( -6 * F_tid * kT_sec * q1 * (1 + q1) * (R_sec / a) ** 8 * (a / (1 - e ** 2) ** (15 / 2)) * (f1 - (1 - e ** 2) ** (3 / 2) * f2 * Omega_sec / n) ) # eq. (9) of Hut 1981, 99, 126 da_tides_pri = ( -6 * F_tid * kT_pri * q2 * (1 + q2) * (R_pri / a) ** 8 * (a / (1 - e ** 2) ** (15 / 2)) * (f1 - (1 - e ** 2) ** (3 / 2) * f2 * Omega_pri / n) ) de_tides_sec = ( -27 * F_tid * kT_sec * q1 * (1 + q1) * (R_sec / a) ** 8 * (e / (1 - e ** 2) ** (13 / 2)) * (f3 - (11 / 18) * (1 - e ** 2) ** (3 / 2) * f4 * Omega_sec/n) ) # eq. (10) of Hut 1981, 99, 126 de_tides_pri = ( -27 * F_tid * kT_pri * q2 * (1 + q2) * (R_pri / a) ** 8 * (e / (1 - e ** 2) ** (13 / 2)) * (f3 - (11 / 18) * (1 - e ** 2) ** (3 / 2) * f4 * Omega_pri/n) ) dOmega_tides_sec = ( (3 * F_tid * kT_sec * q1 ** 2 * M_sec * R_sec ** 2 / I_sec) * (R_sec / a) ** 6 * n / (1 - e ** 2) ** 6 * (f2 - (1 - e ** 2) ** (3 / 2) * f5 * Omega_sec / n) ) # eq. (11) of Hut 1981, 99, 126 dOmega_tides_pri = ( (3 * F_tid * kT_pri * q2 ** 2 * M_pri * R_pri ** 2 / I_pri) * (R_pri / a) ** 6 * n / (1 - e ** 2) ** 6 * (f2 - (1 - e ** 2) ** (3 / 2) * f5 * Omega_pri / n) ) if verbose: print("da,de,dOmega_tides = ", da_tides_sec, de_tides_sec, dOmega_tides_sec, da_tides_pri, de_tides_pri, dOmega_tides_pri) da = da + da_tides_sec + da_tides_pri de = de + de_tides_sec + de_tides_pri dOmega_sec = dOmega_sec + dOmega_tides_sec dOmega_pri = dOmega_pri + dOmega_tides_pri # Gravitional radiation if do_gravitational_radiation: v = (M_pri * M_sec / (M_pri + M_sec) ** 2) da_gr = ( (-2 * const.clight / 15) * (v / ((1 - e ** 2) ** (9 / 2))) * (const.standard_cgrav * (M_pri + M_sec) * const.msol / (a * const.rsol * const.clight ** 2)) ** 3 * ((96 + 292 * e ** 2 + 37 * e ** 4) * (1 - e ** 2) - (1 / 28 * const.standard_cgrav * (M_pri + M_sec) * const.msol / (a * const.rsol * const.clight ** 2)) * ((14008 + 4707 * v)+(80124 + 21560 * v) * e ** 2 + (17325 + 10458) * e ** 4 - 0.5 * (5501 - 1036 * v) * e ** 6)) ) * const.secyer / const.rsol # eq. (35) of Junker et al. 1992, 254, 146 de_gr = ( (-1 / 15) * ((v * const.clight ** 3) / ( const.standard_cgrav * (M_pri + M_sec) * const.msol)) * (const.standard_cgrav * (M_pri + M_sec) * const.msol / ( a * const.rsol * const.clight ** 2)) ** 4 * (e / (1 - e ** 2) ** (7 / 2)) * ((304 + 121 * e ** 2) * (1 - e ** 2) - (1 / 56 * const.standard_cgrav * (M_pri + M_sec) * const.msol / (a * const.rsol * const.clight ** 2)) * (8 * (16705 + 4676 * v) + 12 * (9082 + 2807 * v) * e ** 2 - (25211 - 3388 * v) * e ** 4)) ) * const.secyer # eq. (36) of Junker et al. 1992, 254, 146 if verbose: print("da,de_gr = ", da_gr, de_gr) da = da + da_gr de = de + de_gr # Magnetic braking if do_magnetic_braking: # domega_mb / dt = torque_mb / I is calculated below. # All results are in units of [yr^-2], i.e., the amount of change # in Omega over 1 year. if magnetic_braking_mode == "RVJ83": # Torque from Rappaport, Verbunt, and Joss 1983, ApJ, 275, 713 # The torque is eq.36 of Rapport+1983, with γ = 4. Torque units # converted from cgs units to [Msol], [Rsol], [yr] as all stellar # parameters are given in units of [Msol], [Rsol], [yr] and so that # dOmega_mb/dt is in units of [yr^-2]. dOmega_mb_sec = ( -3.8e-30 * (const.rsol**2 / const.secyer) * M_sec * R_sec**4 * Omega_sec**3 / I_sec * np.clip((1.5 - M_sec) / (1.5 - 1.3), 0, 1) ) dOmega_mb_pri = ( -3.8e-30 * (const.rsol**2 / const.secyer) * M_pri * R_pri**4 * Omega_pri**3 / I_pri * np.clip((1.5 - M_pri) / (1.5 - 1.3), 0, 1) ) # Converting units: # The constant 3.8e-30 from Rappaport+1983 has units of [cm^-2 s] # which need to be converted... # # -3.8e-30 [cm^-2 s] * (const.rsol**2/const.secyer) -> [Rsol^-2 yr] # * M [Msol] # * R ** 4 [Rsol^4] # * Omega ** 3 [yr^-3] # / I [Msol Rsol^2 ] # # Thus, dOmega/dt comes out to [yr^-2] elif magnetic_braking_mode == "M15": # Torque prescription from Matt et al. 2015, ApJ, 799, L23 # Constants: # [erg] or [g cm^2 s^-2] -> [Msol Rsol^2 yr^-2] K = 1.4e30 * const.secyer**2 / (const.msol * const.rsol**2) # m = 0.22 # p = 2.6 # Above constants were calibrated as in # Gossage et al. 2021, ApJ, 912, 65 # TODO: I am not sure which constants are used from each reference # Below, constants are otherwise as assumed as in # Matt et al. 2015, ApJ, 799, L23 omega_sol = 2.6e-6 * const.secyer # [s^-1] -> [yr^-1] # solar rossby = 2 # solar convective turnover time = 12.9 days # Rossby number saturation threshold = 0.14 chi = 2.0 / 0.14 tau_conv_sol = 12.9 / 365.25 # 12.9 [days] -> [yr] Prot_pri = 2 * np.pi / Omega_pri # [yr] Rossby_number_pri = Prot_pri / tau_conv_pri Prot_sec = 2 * np.pi / Omega_sec # [yr] Rossby_number_sec = Prot_sec / tau_conv_sec # critical rotation rate in rad/yr Omega_crit_pri = np.sqrt( const.standard_cgrav * M_pri * const.msol / ((R_pri * const.rsol) ** 3)) * const.secyer Omega_crit_sec = np.sqrt( const.standard_cgrav * M_sec * const.msol / ((R_sec * const.rsol) ** 3)) * const.secyer # omega/omega_c wdivwc_pri = Omega_pri / Omega_crit_pri wdivwc_sec = Omega_sec / Omega_crit_sec gamma_pri = (1 + (wdivwc_pri / 0.072)**2)**0.5 T0_pri = K * R_pri**3.1 * M_pri**0.5 * gamma_pri**(-2 * 0.22) gamma_sec = (1 + (wdivwc_sec / 0.072)**2)**0.5 T0_sec = K * R_sec**3.1 * M_sec**0.5 * gamma_sec**(-2 * 0.22) if (Rossby_number_sec < 0.14): dOmega_mb_sec = ( T0_sec * (chi**2.6) * (Omega_sec / omega_sol) / I_sec * np.clip((1.5 - M_sec) / (1.5 - 1.3), 0, 1) ) else: dOmega_mb_sec = ( T0_sec * ((tau_conv_sec/tau_conv_sol)**2.6) * ((Omega_sec/omega_sol)**(2.6 + 1)) / I_sec * np.clip((1.5 - M_sec) / (1.5 - 1.3), 0, 1) ) if (Rossby_number_pri < 0.14): dOmega_mb_pri = ( T0_pri * (chi**2.6) * (Omega_pri / 2.6e-6) / I_pri * np.clip((1.5 - M_pri) / (1.5 - 1.3), 0, 1) ) else: dOmega_mb_pri = ( T0_pri * ((tau_conv_pri/tau_conv_sol)**2.6) * ((Omega_pri/omega_sol)**(2.6 + 1)) / I_pri * np.clip((1.5 - M_pri) / (1.5 - 1.3), 0, 1) ) elif magnetic_braking_mode == "G18": # Torque prescription from Garraffo et al. 2018, ApJ, 862, 90 # a = 0.03 # b = 0.5 # [g cm^2] -> [Msol Rsol^2] c = 3e41 / (const.msol * const.rsol**2) # Above are as calibrated in Gossage et al. 2021, ApJ, 912, 65 Prot_pri = 2 * np.pi / Omega_pri # [yr] Rossby_number_pri = Prot_pri / tau_conv_pri Prot_sec = 2 * np.pi / Omega_sec # [yr] Rossby_number_sec = Prot_sec / tau_conv_sec n_pri = (0.03 / Rossby_number_pri) + 0.5 * Rossby_number_pri + 1.0 n_sec = (0.03 / Rossby_number_sec) + 0.5 * Rossby_number_sec + 1.0 Qn_pri = 4.05 * np.exp(-1.4 * n_pri) Qn_sec = 4.05 * np.exp(-1.4 * n_sec) dOmega_mb_sec = ( c * Omega_sec**3 * tau_conv_sec * Qn_sec / I_sec * np.clip((1.5 - M_sec) / (1.5 - 1.3), 0, 1) ) dOmega_mb_pri = ( c * Omega_pri**3 * tau_conv_pri * Qn_pri / I_pri * np.clip((1.5 - M_sec) / (1.5 - 1.3), 0, 1) ) elif magnetic_braking_mode == "CARB": # Torque prescription from Van & Ivanova 2019, ApJ, 886, L31 # Based on files hosted on Zenodo: # https://zenodo.org/record/3647683#.Y_TfedLMKUk, # with units converted from [cm], [g], [s] to [Rsol], [Msol], [yr] # Constants as assumed in Van & Ivanova 2019, ApJ, 886, L31 omega_sol = 3e-6 * const.secyer # [s^-1] -> [yr^-1] tau_conv_sol = 2.8e6 / const.secyer # [s] -> yr K2 = 0.07**2 tau_ratio_sec = tau_conv_sec / tau_conv_sol tau_ratio_pri = tau_conv_pri / tau_conv_sol rot_ratio_sec = Omega_sec / omega_sol rot_ratio_pri = Omega_pri / omega_sol # below in units of [Rsol yr^-1]^2 v_esc2_sec = ((2 * const.standard_cgrav * M_sec / R_sec) * (const.msol * const.secyer**2 / const.rsol**3)) v_esc2_pri = ((2 * const.standard_cgrav * M_pri / R_pri) * (const.msol * const.secyer**2 / const.rsol**3)) v_mod2_sec = v_esc2_sec + (2 * Omega_sec**2 * R_sec**2) / K2 v_mod2_pri = v_esc2_pri + (2 * Omega_pri**2 * R_pri**2) / K2 # Van & Ivanova 2019, MNRAS 483, 5595 replace the magnetic field # with Omega * tau_conv phenomenology. Thus, the ratios # (rot_ratio_* and tau_ratio_*) inherently have units of Gauss # [cm^-0.5 g^0.5 s^-1] that needs to be converted to [Rsol], # [Msol], [yr]. VI2019 assume the solar magnetic field strength is # on average 1 Gauss. if (abs(Mdot_sec) > 0): R_alfven_div_R3_sec = ( R_sec**4 * rot_ratio_sec**4 * tau_ratio_sec**4 / (Mdot_sec**2 * v_mod2_sec) * (const.rsol**2 * const.secyer / const.msol**2)) else: R_alfven_div_R3_sec = 0.0 if (abs(Mdot_pri) > 0): R_alfven_div_R3_pri = ( R_pri**4 * rot_ratio_pri**4 * tau_ratio_pri**4 / (Mdot_pri**2 * v_mod2_pri) * (const.rsol**2 * const.secyer / const.msol**2)) else: R_alfven_div_R3_pri = 0.0 # Alfven radius in [Rsol] R_alfven_sec = R_sec * R_alfven_div_R3_sec**(1./3.) R_alfven_pri = R_pri * R_alfven_div_R3_pri**(1./3.) dOmega_mb_sec = ( (2./3.) * Omega_sec * Mdot_sec * R_alfven_sec**2 / I_sec * np.clip((1.5 - M_sec) / (1.5 - 1.3), 0, 1) ) dOmega_mb_pri = ( (2./3.) * Omega_pri * Mdot_pri * R_alfven_pri**2 / I_pri * np.clip((1.5 - M_sec) / (1.5 - 1.3), 0, 1) ) else: Pwarn("WARNING: Magnetic braking is not being calculated in the " "detached step. The given magnetic_braking_mode string \"", magnetic_braking_mode, "\" does not match the available " "built-in cases. To enable magnetic braking, please set " "magnetc_braking_mode to one of the following strings: " "\"RVJ83\" for Rappaport, Verbunt, & Joss 1983" "\"G18\" for Garraffo et al. 2018" "\"M15\" for Matt et al. 2015" "\"CARB\" for Van & Ivanova 2019", "UnsupportedModelWarning") if verbose and verbose != 1: print("magnetic_braking_mode = ", magnetic_braking_mode) print("dOmega_mb = ", dOmega_mb_sec, dOmega_mb_pri) dOmega_sec = dOmega_sec + dOmega_mb_sec dOmega_pri = dOmega_pri + dOmega_mb_pri if do_stellar_evolution_and_spin_from_winds: # Due to the secondary's own evolution, we have: # domega_spin/dt = d(Jspin/I)/dt = dJspin/dt * 1/I + Jspin*d(1/I)/dt. # These are the two terms calculated below. dOmega_spin_wind_sec = ( 2.0 / 3.0 * R_sec ** 2 * Omega_sec * Mdot_sec / I_sec ) # jshell*Mdot/I : specific angular momentum of a thin sperical shell # * mdot / moment of inertia # Omega is in rad/yr here, and R, M in solar (Mdot solar/yr). dOmega_deformation_sec = np.min( [-Omega_sec * Idot_sec / I_sec, 100] ) # This is term of Jspin*d(1/I)/dt term of the domega_spin/dt. # # We limit its increase due to contraction to 100 [(rad/yr)/yr] # increase, otherwise the integrator will fail # (usually when we have WD formation). dOmega_spin_wind_pri = ( 2.0 / 3.0 * R_pri ** 2 * Omega_pri * Mdot_pri / I_pri ) # jshell*Mdot/I : specific angular momentum of a thin sperical shell # * mdot / moment of inertia # Omega is in rad/yr here, and R, M in solar (Mdot solar/yr). dOmega_deformation_pri = np.min( [-Omega_pri * Idot_pri / I_pri, 100] ) if verbose: print( "dOmega_spin_wind , dOmega_deformation = ", dOmega_spin_wind_sec, dOmega_deformation_sec, dOmega_spin_wind_pri, dOmega_deformation_pri, ) dOmega_sec = dOmega_sec + dOmega_spin_wind_sec dOmega_pri = dOmega_pri + dOmega_spin_wind_pri dOmega_sec = dOmega_sec + dOmega_deformation_sec dOmega_pri = dOmega_pri + dOmega_deformation_pri if verbose: print("a[Ro],e,Omega[rad/yr] have been =", a, e, Omega_sec, Omega_pri) print("da,de,dOmega (all) in 1yr is = ", da, de, dOmega_sec, dOmega_pri) return [ da, de, dOmega_sec, dOmega_pri, ]