Source code for posydon.active_learning.psy_cris.synthetic_data.synth_data_3D

__authors__ = [
    "Kyle Akira Rocha <kylerocha2024@u.northwestern.edu>",
]


import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

[docs] def func_1(x,y,z): # Spheroid centered at [x,y]=[-1,1] radius = 1; a = 1.2; b = 2; c = 0.8 return ( (x+1)/a )**2 + ( (y-1)/b )**2 + ( z/c )**2 - radius**2
[docs] def func_2(x,y,z): # Modified Rosenbrock function a = 1; b = 3; c = abs(z) ; rosenbrock_func = (a-x)**2 + b*(y-x**2)**2 return rosenbrock_func + c*(x-z)**2
[docs] def func_3(x,y,z): return np.sin( (x-0.25) ) + (y)*z
[docs] def func_4(x,y,z): return np.where( z < 0, abs((x)**3-(y)**3)*np.exp(-z), 0 )
[docs] def func_5(x,y,z): # Spheroid centered at [x,y,z]=[0.5,0.5,0.85] radius = 0.2; a = 0.6; b = 0.2; c = 0.3; return ((x-0.5)/a )**2+( (y-0.5)/b )**2+( (z-0.85)/c )**2 - radius**2
[docs] def analytic_classification_3D( X, Y, Z, f_splits=[1, 2.5,-0.5, 1.8, 0.3]): """Unique classes 1,2,3,4,6,8 for a total of 6 classes. This nicely matches the colormap Dark2 for plotting.""" ret_f1 = func_1(X,Y,Z) ret_f2 = func_2(X,Y,Z) ret_f3 = func_3(X,Y,Z) ret_f4 = func_4(X,Y,Z) ret_f5 = func_5(X,Y,Z) where_above_1 = ret_f1 > f_splits[0] where_above_2 = ret_f2 > f_splits[1] where_above_3 = ret_f3 > f_splits[2] where_above_4 = ret_f4 > f_splits[3] where_above_5 = ret_f5 > f_splits[4] # First layer - purple, yellow base_class = np.where( where_above_3, 3, 6) # Second layer - gray base_class[ where_above_2 ] = 8 # Third layer - green combined_val = np.logical_and( where_above_1, where_above_2 ) # intersect with gray base_class[ combined_val ] = 1 # Fourth layer - pink base_class[ where_above_4 ] = 4 # Fifth layer - orange base_class[ np.invert(where_above_5) ] = 2 return base_class
[docs] def analytic_regression_3D(x,y,z): # Something simple to start with return np.sin( np.sqrt(x**2 + y**2 + z**2) * 2*np.pi/0.75 )
[docs] def get_raw_output_3D(X,Y,Z): """Get the raw output for classification and regression for the 3D synthetic data set. Unique classes include the following [1,2,3,4,6,8]. Returns ------- classification_data : ndarray Class data (unique integers) in 3d classification space. regression_data : ndarray Regression output frmo 3d function. """ if isinstance( X, (float,int) ): X = np.array([X]); Y=np.array([Y]); Z=np.array([Z]) elif isinstance( X, list ): X= np.array(X); Y=np.array(Y); Z=np.array(Z) classification_data = analytic_classification_3D(X,Y,Z) regression_data = analytic_regression_3D(X,Y,Z) return classification_data, regression_data
[docs] def get_output_3D(X,Y,Z): """Takes input points (X,Y,Z) in 3D and returns a DataFrame with the corresponding 3D classification and regression functions. Returns ------- data_frame : DataFrame Pandas dataframe including inputs, class, and outputs. """ if isinstance( X, (float,int) ): X = np.array([X]); Y=np.array([Y]); Z=np.array([Z]) elif isinstance( X, list ): X= np.array(X); Y=np.array(Y); Z=np.array(Z) classification_data, regression_data = get_raw_output_3D(X,Y,Z) if X.ndim > 1 or Y.ndim > 1 or Z.ndim > 1: classification_data = classification_data.flatten() regression_data = regression_data.flatten() X=X.flatten(); Y=Y.flatten(); Z=Z.flatten() data_frame = pd.DataFrame() data_frame["input_1"] = X data_frame["input_2"] = Y data_frame["input_3"] = Z data_frame["class"] = classification_data.flatten() data_frame["output_1"] = regression_data.flatten() return data_frame
# EXAMPLE # x_vals = np.linspace(-1,1,15) # X, Y, Z = np.meshgrid( x_vals, x_vals+0.01, x_vals-0.02, indexing='ij') # pd_data = get_output_3D( X,Y,Z ) # print( pd_data ) # ----------------------------------------------------------------------------- ########################### ## PLOTTING ## ########################### if (__name__ == "main"): # SLICE PLOTS all_Z_vals = [-1, -0.5, 0, 0.5, 1] fig, (subs_xy, subs_xz) = plt.subplots(nrows = 2, ncols = len(all_Z_vals), figsize=( 4*len(all_Z_vals), 7.5), dpi=50 ) for ct, zed_val in enumerate(all_Z_vals): N = 90 # X-Y slice X, Y = np.meshgrid( np.linspace(-1,1,N), np.linspace(-1,1,N) ) Z = np.ones( X.shape ) * zed_val f_out = analytic_classification_3D( X, Y, Z ) image = subs_xy[ct].pcolor( X, Y, f_out, cmap="Dark2", vmin=0.5, vmax=8.5 ) subs_xy[ct].set_title("z = {:.2f}".format(zed_val), fontsize=14 ) # X-Z slice X, Z = np.meshgrid( np.linspace(-1,1,N), np.linspace(-1,1,N) ) Y = np.ones( X.shape ) * zed_val f_out_2 = analytic_classification_3D( X, Y, Z ) image = subs_xz[ct].pcolor( X, Z, f_out_2, cmap="Dark2", vmin=0.5, vmax=8.5 ) subs_xz[ct].set_title("y = {:.2f}".format(zed_val), fontsize=14 ) # horizontal lines subs_xy[ct].hlines( all_Z_vals, xmin=-1, xmax=1, color="w", linestyle='--', alpha =0.35 ) # split subplot into two exes and change one to cbar from mpl_toolkits.axes_grid1 import make_axes_locatable for sub_plot_ax in [subs_xy[ct], subs_xz[ct]]: divider = make_axes_locatable( sub_plot_ax ) cax2 = divider.append_axes("right", size="5%", pad=0.1) fig.colorbar(image, cax=cax2) subs_xy[0].set_ylabel("Y", fontsize=15, rotation=0) subs_xz[0].set_ylabel("Z", fontsize=15, rotation=0) for i in range(len(all_Z_vals)): subs_xy[i].set_xlabel("X", fontsize=15); subs_xz[i].set_xlabel("X", fontsize=15); #fig.colorbar(image, ax=subs_xy[ct]) plt.subplots_adjust(hspace=0.35) plt.show() # 3D Plots from matplotlib.colormaps import get_cmap fig = plt.figure() ax = fig.add_subplot(111, projection='3d') n = 45 x_vals = np.linspace(-1,1,n) y_vals = np.linspace(-1.01,1,n) z_vals = np.linspace(-1,1.01,n) X, Y, Z = np.meshgrid( x_vals, y_vals, z_vals, indexing='ij') test_f_out = analytic_classification_3D( X, Y, Z ) # Plotting all points for a given class # 4, 1, 8, 3, 6, 2 for ct, number in enumerate( [4,6,2] ): cmap = get_cmap('Dark2') rgba = cmap( number/8.5 ) where_good_pts = np.where( test_f_out == number ) ax.scatter( X[where_good_pts], Y[where_good_pts], Z[where_good_pts], color=rgba, alpha=0.55, s=10 ) # Plotting all points in a z slice slice_zed_val = 0 slice_val = np.argmin( abs(slice_zed_val-z_vals) ) # which zed val # for ct, number in enumerate( np.unique(test_f_out) ): # cmap = get_cmap('Dark2') # rgba = cmap( number/8.5 ) # where_good_pts = np.where( test_f_out[:,:,slice_val] == number ) # ax.scatter( X[:,:,slice_val][where_good_pts], # Y[:,:,slice_val][where_good_pts], # Z[:,:,slice_val][where_good_pts], # color=rgba, alpha=0.85, s=10 ) ax.set_xlim3d(1,-1); ax.set_ylim3d(1,-1); ax.set_zlim3d(-1,1) ax.set_xlabel('X', fontsize=15); ax.set_ylabel('Y', fontsize=15); ax.set_zlabel('Z', fontsize=15) ax.view_init(elev=89.5, azim=90) plt.show() # Regression x_vals = np.linspace(-1,1,15) X, Y, Z = np.meshgrid( x_vals, x_vals+0.01, x_vals-0.02, indexing='ij') pd_data = get_output_3D( X,Y,Z ) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') scatter_plot = ax.scatter( X, Y, Z, c=pd_data["output_1"].values, alpha=1, s=10 ) ax.set_xlim3d(1,-1); ax.set_ylim3d(1,-1); ax.set_zlim3d(-1,1) ax.set_xlabel('X', fontsize=15); ax.set_ylabel('Y', fontsize=15); ax.set_zlabel('Z', fontsize=15) ax.view_init(elev=89.5, azim=90) fig.colorbar(scatter_plot) plt.show()